J. N. Graham, H. Liu, V. Sazgari, C. Mielke III, M. Medarde, H. Luetkens, R. Khasanov, Y. Shi, Z. Guguchia
{"title":"Microscopic probing of the superconducting and normal state properties of Ta2V3.1Si0.9 by muon spin rotation","authors":"J. N. Graham, H. Liu, V. Sazgari, C. Mielke III, M. Medarde, H. Luetkens, R. Khasanov, Y. Shi, Z. Guguchia","doi":"10.1038/s43246-024-00666-2","DOIUrl":null,"url":null,"abstract":"The two-dimensional kagome lattice is an experimental playground for novel physical phenomena, from frustrated magnetism and topological matter to chiral charge order and unconventional superconductivity. A newly identified kagome superconductor, Ta2V3.1Si0.9 has recently gained attention for possessing a record high critical temperature, TC = 7.5 K for kagome metals at ambient pressure. In this study we conducted a series of muon spin rotation measurements to delve deeper into understanding the superconducting and normal state properties of Ta2V3.1Si0.9. We demonstrate that Ta2V3.1Si0.9 is a bulk superconductor with either a s+s-wave or anisotropic s-wave gap symmetry, and has an unusual paramagnetic shift in response to external magnetic fields in the superconducting state. Additionally, we observe an exceptionally low superfluid density − a distinctive characteristic of unconventional superconductivity − which remarkably is comparable to the superfluid density found in hole-doped cuprates. In its normal state, Ta2V3.1Si0.9 exhibits a significant increase in the zero-field muon spin depolarisation rate, starting at approximately 150 K, which has been observed in other kagome-lattice superconductors, and therefore hints at possible hidden magnetism. These findings characterise Ta2V3.1Si0.9 as an unconventional superconductor and a noteworthy new member of the vanadium-based kagome material family. Ta2V3.1Si0.9 is an interesting kagome superconductor with a record-high critical temperature of 7.5 K for kagome metals at ambient pressure. Here, muon spin rotation measurements reveal an unusual paramagnetic shift in response to external magnetic fields and an exceptionally dilute superfluid density despite the high TC, signalling the unconventional nature of superconductivity.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-7"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00666-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00666-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The two-dimensional kagome lattice is an experimental playground for novel physical phenomena, from frustrated magnetism and topological matter to chiral charge order and unconventional superconductivity. A newly identified kagome superconductor, Ta2V3.1Si0.9 has recently gained attention for possessing a record high critical temperature, TC = 7.5 K for kagome metals at ambient pressure. In this study we conducted a series of muon spin rotation measurements to delve deeper into understanding the superconducting and normal state properties of Ta2V3.1Si0.9. We demonstrate that Ta2V3.1Si0.9 is a bulk superconductor with either a s+s-wave or anisotropic s-wave gap symmetry, and has an unusual paramagnetic shift in response to external magnetic fields in the superconducting state. Additionally, we observe an exceptionally low superfluid density − a distinctive characteristic of unconventional superconductivity − which remarkably is comparable to the superfluid density found in hole-doped cuprates. In its normal state, Ta2V3.1Si0.9 exhibits a significant increase in the zero-field muon spin depolarisation rate, starting at approximately 150 K, which has been observed in other kagome-lattice superconductors, and therefore hints at possible hidden magnetism. These findings characterise Ta2V3.1Si0.9 as an unconventional superconductor and a noteworthy new member of the vanadium-based kagome material family. Ta2V3.1Si0.9 is an interesting kagome superconductor with a record-high critical temperature of 7.5 K for kagome metals at ambient pressure. Here, muon spin rotation measurements reveal an unusual paramagnetic shift in response to external magnetic fields and an exceptionally dilute superfluid density despite the high TC, signalling the unconventional nature of superconductivity.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.