Cold Spring Harbor perspectives in biology最新文献

筛选
英文 中文
Tissue Active Matter: Integrating Mechanics and Signaling into Dynamical Models. 组织活性物质:将力学和信号传导整合到动力学模型中。
IF 6.9 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2025-04-01 DOI: 10.1101/cshperspect.a041653
David B Brückner, Edouard Hannezo
{"title":"Tissue Active Matter: Integrating Mechanics and Signaling into Dynamical Models.","authors":"David B Brückner, Edouard Hannezo","doi":"10.1101/cshperspect.a041653","DOIUrl":"10.1101/cshperspect.a041653","url":null,"abstract":"<p><p>The importance of physical forces in the morphogenesis, homeostatic function, and pathological dysfunction of multicellular tissues is being increasingly characterized, both theoretically and experimentally. Analogies between biological systems and inert materials such as foams, gels, and liquid crystals have provided striking insights into the core design principles underlying multicellular organization. However, these connections can seem surprising given that a key feature of multicellular systems is their ability to constantly consume energy, providing an active origin for the forces that they produce. Key emerging questions are, therefore, to understand whether and how this activity grants tissues novel properties that do not have counterparts in classical materials, as well as their consequences for biological function. Here, we review recent discoveries at the intersection of active matter and tissue biology, with an emphasis on how modeling and experiments can be combined to understand the dynamics of multicellular systems. These approaches suggest that a number of key biological tissue-scale phenomena, such as morphogenetic shape changes, collective migration, or fate decisions, share unifying design principles that can be described by physical models of tissue active matter.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141476127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facioscapulohumeral Dystrophy: Molecular Basis and Therapeutic Opportunities. 面岬肱骨营养不良症:分子基础和治疗机会。
IF 6.9 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2025-04-01 DOI: 10.1101/cshperspect.a041492
Tessa Arends, Danielle C Hamm, Silvère van der Maarel, Stephen J Tapscott
{"title":"Facioscapulohumeral Dystrophy: Molecular Basis and Therapeutic Opportunities.","authors":"Tessa Arends, Danielle C Hamm, Silvère van der Maarel, Stephen J Tapscott","doi":"10.1101/cshperspect.a041492","DOIUrl":"10.1101/cshperspect.a041492","url":null,"abstract":"<p><p>Facioscapulohumeral dystrophy (FSHD) is caused by misexpression of the early embryonic transcription factor Double Homeobox Protein 4 (DUX4) in skeletal muscle. DUX4 is normally expressed at the 4-cell stage of the human embryo and initiates a portion of the first wave of embryonic gene expression that establishes the totipotent cells of the embryo. Following brief expression, the <i>DUX4</i> locus is suppressed by epigenetic silencing and remains silenced in nearly all somatic cells. Mutations that cause FSHD decrease the efficiency of epigenetic silencing of the <i>DUX4</i> locus and result in aberrant expression of this transcription factor in skeletal muscles. DUX4 expression in these skeletal muscles reactivates part of the early totipotent program and suppresses the muscle program-resulting in a progressive muscular dystrophy that affects some muscles earlier than others. These advances in understanding the cause of FSHD have led to multiple therapeutic strategies that are now entering clinical trials.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733064/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetics of Human Telomeres. 人类端粒的表观遗传学。
IF 6.9 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2025-03-17 DOI: 10.1101/cshperspect.a041706
Nicole Bettin, Mélina Vaurs, Anabelle Decottignies
{"title":"Epigenetics of Human Telomeres.","authors":"Nicole Bettin, Mélina Vaurs, Anabelle Decottignies","doi":"10.1101/cshperspect.a041706","DOIUrl":"https://doi.org/10.1101/cshperspect.a041706","url":null,"abstract":"<p><p>Human telomeric heterochromatin is unusual in that it does not show the enrichment of canonical repressive histone marks H3K9me3 or H4K20me3 seen in constitutive heterochromatin. Instead, human telomeres exhibit both facultative heterochromatin and euchromatin marks, consistent with their epigenetically regulated transcription into TERRA noncoding RNA. Additionally, telomeric DNA is out of phase with the DNA helical repeat and has no nucleosome positioning signal. Yet, human telomeric DNA forms a columnar structure of tightly stacked nucleosomes, alternating with open states, and regulated by histone tails and shelterin protein binding. We discuss the proposed mechanisms regulating human telomeric chromatin and the consequences that telomeric chromatin properties have on various cellular processes, such as telomere transcription, the regulation of shelterin binding, and the activation of the alternative lengthening of telomeres mechanism. Together, we summarize current evidence on the combination of hetero- and euchromatic properties of human telomeres that may help explain their crucial protective functions and plasticity to regulate telomere maintenance pathways and damage signaling.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143647562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In the Loop: Unusual DNA Structures at Telomeric Repeats and Their Impact on Telomere Function. 在循环中:端粒重复的不寻常DNA结构及其对端粒功能的影响。
IF 6.9 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2025-03-17 DOI: 10.1101/cshperspect.a041694
Elia Zanella, Ylli Doksani
{"title":"In the Loop: Unusual DNA Structures at Telomeric Repeats and Their Impact on Telomere Function.","authors":"Elia Zanella, Ylli Doksani","doi":"10.1101/cshperspect.a041694","DOIUrl":"https://doi.org/10.1101/cshperspect.a041694","url":null,"abstract":"<p><p>Telomeric repeats recruit the shelterin complex to prevent activation of the double-strand break response at chromosome ends. Thousands of TTAGGG repeats are present at each chromosome end to ensure telomere function. This abundance of G-rich repeats comes with the propensity to generate unusual DNA structures. The telomere loop (t-loop) structure, generated by strand invasion of the 3' overhang in the internal repeats, contributes to telomere function. G4-DNA is promoted by the stretches of G-rich repeats in a single-stranded form and may affect telomere replication and elongation by telomerase. The intramolecular homology can lead to the formation of internal loops (i-loops) via intramolecular recombination at sites of telomeric damage, which can promote the excision of telomeric repeats as extrachromosomal circular DNA. Shelterin promotes t-loops, counteracting the accumulation of pathological structures either directly or via the recruitment of specialized helicases. Here, we will discuss the current evidence for the formation of unusual DNA structures at telomeres and possible implications for telomere function.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143647564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple Sclerosis and Other Acquired Demyelinating Diseases of the Central Nervous System. 多发性硬化症和其他后天性中枢神经系统脱髓鞘疾病。
IF 6.9 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2025-03-03 DOI: 10.1101/cshperspect.a041374
Michael D Kornberg, Peter A Calabresi
{"title":"Multiple Sclerosis and Other Acquired Demyelinating Diseases of the Central Nervous System.","authors":"Michael D Kornberg, Peter A Calabresi","doi":"10.1101/cshperspect.a041374","DOIUrl":"10.1101/cshperspect.a041374","url":null,"abstract":"<p><p>Acquired demyelinating diseases of the central nervous system (CNS) comprise inflammatory conditions, including multiple sclerosis (MS) and related diseases, as well as noninflammatory conditions caused by toxic, metabolic, infectious, traumatic, and neurodegenerative insults. Here, we review the spectrum of diseases producing acquired CNS demyelination before focusing on the prototypical example of MS, exploring the pathologic mechanisms leading to myelin injury in relapsing and progressive MS and summarizing the mechanisms and modulators of remyelination. We highlight the complex interplay between the immune system, oligodendrocytes and oligodendrocyte progenitor cells (OPCs), and other CNS glia cells such as microglia and astrocytes in the pathogenesis and clinical course of MS. Finally, we review emerging therapeutic strategies that exploit our growing understanding of disease mechanisms to limit progression and promote remyelination.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875095/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141161299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum: Modeling the Emergence of Circuit Organization and Function during Development. 更正:模拟发育过程中电路组织和功能的出现。
IF 6.9 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2025-03-03 DOI: 10.1101/cshperspect.a041835
Shreya Lakhera, Elizabeth Herbert, Julijana Gjorgjieva
{"title":"Corrigendum: Modeling the Emergence of Circuit Organization and Function during Development.","authors":"Shreya Lakhera, Elizabeth Herbert, Julijana Gjorgjieva","doi":"10.1101/cshperspect.a041835","DOIUrl":"10.1101/cshperspect.a041835","url":null,"abstract":"","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875084/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Speciation. 物种。
IF 8.4 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2025-03-03 DOI: 10.1101/cshperspect.a041735
Catherine L Peichel, Daniel I Bolnick, Åke Brännström, Ulf Dieckmann, Rebecca J Safran
{"title":"Speciation.","authors":"Catherine L Peichel, Daniel I Bolnick, Åke Brännström, Ulf Dieckmann, Rebecca J Safran","doi":"10.1101/cshperspect.a041735","DOIUrl":"10.1101/cshperspect.a041735","url":null,"abstract":"<p><p>What drives the emergence of new species has fascinated biologists since Darwin. Reproductive barriers to gene flow are a key step in the formation of species, and recent advances have shed new light on how these are established. Genetic, genomic, and comparative techniques, together with improved theoretical frameworks, are increasing our understanding of the underlying mechanisms. They are also helping us forecast speciation and reveal the impact of human activity.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":8.4,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875085/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maintaining Telomeres without Telomerase in Drosophila: Novel Mechanisms and Rapid Evolution to Save a Genus. 果蝇在没有端粒酶的情况下维持端粒:拯救一个属的新机制和快速进化。
IF 6.9 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2025-03-03 DOI: 10.1101/cshperspect.a041708
Stefano Cacchione, Giovanni Cenci, Anne-Marie Dion-Côté, Daniel A Barbash, Grazia Daniela Raffa
{"title":"Maintaining Telomeres without Telomerase in <i>Drosophila</i>: Novel Mechanisms and Rapid Evolution to Save a Genus.","authors":"Stefano Cacchione, Giovanni Cenci, Anne-Marie Dion-Côté, Daniel A Barbash, Grazia Daniela Raffa","doi":"10.1101/cshperspect.a041708","DOIUrl":"10.1101/cshperspect.a041708","url":null,"abstract":"<p><p>Telomere maintenance is crucial for preventing the linear eukaryotic chromosome ends from being mistaken for DNA double-strand breaks, thereby avoiding chromosome fusions and the loss of genetic material. Unlike most eukaryotes that use telomerase for telomere maintenance, <i>Drosophila</i> relies on retrotransposable elements-specifically <i>HeT-A</i>, <i>TAHRE</i>, and <i>TART</i> (collectively referred to as HTT)-which are regulated and precisely targeted to chromosome ends. <i>Drosophila</i> telomere protection is mediated by a set of fast-evolving proteins, termed terminin, which bind to chromosome termini without sequence specificity, balancing DNA damage response factors to avoid erroneous repair mechanisms. This unique telomere capping mechanism highlights an alternative evolutionary strategy to compensate for telomerase loss. The modulation of recombination and transcription at <i>Drosophila</i> telomeres offers insights into the diverse mechanisms of telomere maintenance. Recent studies at the population level have begun to reveal the architecture of telomere arrays, the diversity among the HTT subfamilies, and their relative frequencies, aiming to understand whether and how these elements have evolved to reach an equilibrium with the host and to resolve genetic conflicts. Further studies may shed light on the complex relationships between telomere transcription, recombination, and maintenance, underscoring the adaptive plasticity of telomeric complexes across eukaryotes.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Mechanics of Building Functional Organs. 构建功能器官的机制
IF 6.9 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2025-03-03 DOI: 10.1101/cshperspect.a041520
Toby G R Andrews, Rashmi Priya
{"title":"The Mechanics of Building Functional Organs.","authors":"Toby G R Andrews, Rashmi Priya","doi":"10.1101/cshperspect.a041520","DOIUrl":"10.1101/cshperspect.a041520","url":null,"abstract":"<p><p>Organ morphogenesis is multifaceted, multiscale, and fundamentally a robust process. Despite the complex and dynamic nature of embryonic development, organs are built with reproducible size, shape, and function, allowing them to support organismal growth and life. This striking reproducibility of tissue form exists because morphogenesis is not entirely hardwired. Instead, it is an emergent product of mechanochemical information flow, operating across spatial and temporal scales-from local cellular deformations to organ-scale form and function, and back. In this review, we address the mechanical basis of organ morphogenesis, as understood by observations and experiments in living embryos. To this end, we discuss how mechanical information controls the emergence of a highly conserved set of structural motifs that shape organ architectures across the animal kingdom: folds and loops, tubes and lumens, buds, branches, and networks. Moving forward, we advocate for a holistic conceptual framework for the study of organ morphogenesis, which rests on an interdisciplinary toolkit and brings the embryo center stage.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616527/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling the Emergence of Circuit Organization and Function during Development. 模拟发育过程中电路组织和功能的出现
IF 6.9 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2025-02-03 DOI: 10.1101/cshperspect.a041511
Shreya Lakhera, Elizabeth Herbert, Julijana Gjorgjieva
{"title":"Modeling the Emergence of Circuit Organization and Function during Development.","authors":"Shreya Lakhera, Elizabeth Herbert, Julijana Gjorgjieva","doi":"10.1101/cshperspect.a041511","DOIUrl":"10.1101/cshperspect.a041511","url":null,"abstract":"<p><p>Developing neural circuits show unique patterns of spontaneous activity and structured network connectivity shaped by diverse activity-dependent plasticity mechanisms. Based on extensive experimental work characterizing patterns of spontaneous activity in different brain regions over development, theoretical and computational models have played an important role in delineating the generation and function of individual features of spontaneous activity and their role in the plasticity-driven formation of circuit connectivity. Here, we review recent modeling efforts that explore how the developing cortex and hippocampus generate spontaneous activity, focusing on specific connectivity profiles and the gradual strengthening of inhibition as the key drivers behind the observed developmental changes in spontaneous activity. We then discuss computational models that mechanistically explore how different plasticity mechanisms use this spontaneous activity to instruct the formation and refinement of circuit connectivity, from the formation of single neuron receptive fields to sensory feature maps and recurrent architectures. We end by highlighting several open challenges regarding the functional implications of the discussed circuit changes, wherein models could provide the missing step linking immature developmental and mature adult information processing capabilities.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864115/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信