Shane A Liddelow, Michelle L Olsen, Michael V Sofroniew
{"title":"Reactive Astrocytes and Emerging Roles in Central Nervous System (CNS) Disorders.","authors":"Shane A Liddelow, Michelle L Olsen, Michael V Sofroniew","doi":"10.1101/cshperspect.a041356","DOIUrl":"10.1101/cshperspect.a041356","url":null,"abstract":"<p><p>In addition to their many functions in the healthy central nervous system (CNS), astrocytes respond to CNS damage and disease through a process called \"reactivity.\" Recent evidence reveals that astrocyte reactivity is a heterogeneous spectrum of potential changes that occur in a context-specific manner. These changes are determined by diverse signaling events and vary not only with the nature and severity of different CNS insults but also with location in the CNS, genetic predispositions, age, and potentially also with \"molecular memory\" of previous reactivity events. Astrocyte reactivity can be associated with both essential beneficial functions as well as with harmful effects. The available information is rapidly expanding and much has been learned about molecular diversity of astrocyte reactivity. Emerging functional associations point toward central roles for astrocyte reactivity in determining the outcome in CNS disorders.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216178/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139691424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neuronal Circuit Evolution: From Development to Structure and Adaptive Significance.","authors":"Nikolaos Konstantinides, Claude Desplan","doi":"10.1101/cshperspect.a041493","DOIUrl":"10.1101/cshperspect.a041493","url":null,"abstract":"<p><p>Neuronal circuits represent the functional units of the brain. Understanding how the circuits are generated to perform computations will help us understand how the brain functions. Nevertheless, neuronal circuits are not engineered, but have formed through millions of years of animal evolution. We posit that it is necessary to study neuronal circuit evolution to comprehensively understand circuit function. Here, we review our current knowledge regarding the mechanisms that underlie circuit evolution. First, we describe the possible genetic and developmental mechanisms that have contributed to circuit evolution. Then, we discuss the structural changes of circuits during evolution and how these changes affected circuit function. Finally, we try to put circuit evolution in an ecological context and assess the adaptive significance of specific examples. We argue that, thanks to the advent of new tools and technologies, evolutionary neurobiology now allows us to address questions regarding the evolution of circuitry and behavior that were unimaginable until very recently.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688512/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141476125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Membrane Epilipidome-Lipid Modifications, Their Dynamics, and Functional Significance.","authors":"Sider Penkov, Maria Fedorova","doi":"10.1101/cshperspect.a041417","DOIUrl":"10.1101/cshperspect.a041417","url":null,"abstract":"<p><p>Lipids are characterized by extremely high structural diversity translated into a wide range of physicochemical properties. As such, lipids are vital for many different functions including organization of cellular and organelle membranes, control of cellular and organismal energy metabolism, as well as mediating multiple signaling pathways. To maintain the lipid chemical diversity and to achieve rapid lipid remodeling required for the responsiveness and adaptability of cellular membranes, living systems make use of a network of chemical modifications of already existing lipids that complement the rather slow biosynthetic pathways. Similarly to biopolymers, which can be modified epigenetically and posttranscriptionally (for nucleic acids) or posttranslationally (for proteins), lipids can also undergo chemical alterations through oxygenation, nitration, phosphorylation, glycosylation, etc. In this way, an expanded collective of modified lipids that we term the \"epilipidome,\" provides the ultimate level of complexity to biological membranes and delivers a battery of active small-molecule compounds for numerous regulatory processes. As many lipid modifications are tightly controlled and often occur in response to extra- and intracellular stimuli at defined locations, the emergence of the epilipidome greatly contributes to the spatial and temporal compartmentalization of diverse cellular processes. Accordingly, epilipid modifications are observed in all living organisms and are among the most consistent prerequisites for complex life.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139520207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Forces Shaping the Blastocyst.","authors":"David Rozema, Jean-Léon Maître","doi":"10.1101/cshperspect.a041519","DOIUrl":"https://doi.org/10.1101/cshperspect.a041519","url":null,"abstract":"<p><p>The blastocyst forms during the first days of mammalian development. The structure of the blastocyst is conserved among placental mammals and is paramount to the establishment of the first mammalian lineages. The blastocyst is composed of an extraembryonic epithelium, the trophectoderm (TE), that envelopes a fluid-filled lumen and the inner cell mass (ICM). To shape the blastocyst, embryos transit through three stages driven by forces that have been characterized in the mouse embryo over the past decade. The morphogenetically quiescent cleavage stages mask dynamic cytoskeletal remodeling. Then, during the formation of the morula, cells pull themselves together and the strongest ones internalize. Finally, the blastocyst forms after the pressurized lumen breaks the radial symmetry of the embryo before expanding in cycles of collapses and regrowth. In this review, we delineate the force patterns sculpting the blastocyst, based on our knowledge on the mouse and, to some extent, human embryos.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141476124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fisher's Geometric Model as a Tool to Study Speciation.","authors":"Hilde Schneemann, Bianca De Sanctis, John J Welch","doi":"10.1101/cshperspect.a041442","DOIUrl":"10.1101/cshperspect.a041442","url":null,"abstract":"<p><p>Interactions between alleles and across environments play an important role in the fitness of hybrids and are at the heart of the speciation process. Fitness landscapes capture these interactions and can be used to model hybrid fitness, helping us to interpret empirical observations and clarify verbal models. Here, we review recent progress in understanding hybridization outcomes through Fisher's geometric model, an intuitive and analytically tractable fitness landscape that captures many fitness patterns observed across taxa. We use case studies to show how the model parameters can be estimated from different types of data and discuss how these estimates can be used to make inferences about the divergence history and genetic architecture. We also highlight some areas where the model's predictions differ from alternative incompatibility-based models, such as the snowball effect and outlier patterns in genome scans.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216183/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139520202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carien M Niessen, M Lisa Manning, Sara A Wickström
{"title":"Mechanochemical Principles of Epidermal Tissue Dynamics.","authors":"Carien M Niessen, M Lisa Manning, Sara A Wickström","doi":"10.1101/cshperspect.a041518","DOIUrl":"https://doi.org/10.1101/cshperspect.a041518","url":null,"abstract":"<p><p>How tissue architecture and function emerge during development and what facilitates their resilience and homeostatic dynamics during adulthood is a fundamental question in biology. Biological tissue barriers such as the skin epidermis have evolved strategies that integrate dynamic cellular turnover with high resilience against mechanical and chemical stresses. Interestingly, both dynamic and resilient functions are generated by a defined set of molecular and cell-scale processes, including adhesion and cytoskeletal remodeling, cell shape changes, cell division, and cell movement. These traits are coordinated in space and time with dynamic changes in cell fates and cell mechanics that are generated by contractile and adhesive forces. In this review, we discuss how studies on epidermal morphogenesis and homeostasis have contributed to our understanding of the dynamic interplay between biochemical and mechanical signals during tissue morphogenesis and homeostasis, and how the material properties of tissues dictate how cells respond to these active stresses, thereby linking cell-scale behaviors to tissue- and organismal-scale changes.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":7.2,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A History of Cancer Research: Oncogenic Transcription Factors.","authors":"Joseph Lipsick","doi":"10.1101/cshperspect.a035881","DOIUrl":"10.1101/cshperspect.a035881","url":null,"abstract":"<p><p>Transcription factors play crucial roles in cancer, and oncogenic counterparts of cellular transcription factors are present in a number of tumor viruses. It was studies in the early 1980s that first showed tumor viruses could encode nuclear as well as cytoplasmic oncoproteins. Subsequent work provided detailed insight into their mechanisms of action, as well as potential therapeutic avenues. In this excerpt from his forthcoming book on the history of cancer research, Joe Lipsick looks back at early work on nuclear oncogenes, including the discovery of MYC, MYB, FOS and JUN, Rel/NF-κB, and nuclear receptors such as the retinoic acid receptor and thyroid hormone receptor.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":"16 6","pages":""},"PeriodicalIF":7.2,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146308/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141236962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruth M Stassart, Jose A Gomez-Sanchez, Alison C Lloyd
{"title":"Schwann Cells as Orchestrators of Nerve Repair: Implications for Tissue Regeneration and Pathologies.","authors":"Ruth M Stassart, Jose A Gomez-Sanchez, Alison C Lloyd","doi":"10.1101/cshperspect.a041363","DOIUrl":"10.1101/cshperspect.a041363","url":null,"abstract":"<p><p>Peripheral nerves exist in a stable state in adulthood providing a rapid bidirectional signaling system to control tissue structure and function. However, following injury, peripheral nerves can regenerate much more effectively than those of the central nervous system (CNS). This multicellular process is coordinated by peripheral glia, in particular Schwann cells, which have multiple roles in stimulating and nurturing the regrowth of damaged axons back to their targets. Aside from the repair of damaged nerves themselves, nerve regenerative processes have been linked to the repair of other tissues and de novo innervation appears important in establishing an environment conducive for the development and spread of tumors. In contrast, defects in these processes are linked to neuropathies, aging, and pain. In this review, we focus on the role of peripheral glia, especially Schwann cells, in multiple aspects of nerve regeneration and discuss how these findings may be relevant for pathologies associated with these processes.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146315/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139416491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marius Roesti, Hannes Roesti, Ina Satokangas, Janette Boughman, Samridhi Chaturvedi, Jochen B W Wolf, R Brian Langerhans
{"title":"Predictability, an Orrery, and a Speciation Machine: Quest for a Standard Model of Speciation.","authors":"Marius Roesti, Hannes Roesti, Ina Satokangas, Janette Boughman, Samridhi Chaturvedi, Jochen B W Wolf, R Brian Langerhans","doi":"10.1101/cshperspect.a041456","DOIUrl":"10.1101/cshperspect.a041456","url":null,"abstract":"<p><p>Accurate predictions are commonly taken as a hallmark of strong scientific understanding. Yet, we do not seem capable today of making many accurate predictions about biological speciation. Why? What limits predictability in general, what exactly is the function and value of predictions, and how might we go about predicting new species? Inspired by an orrery used to explain solar eclipses, we address these questions with a thought experiment in which we conceive an evolutionary speciation machine generating new species. This experiment highlights complexity, chance, and speciation pluralism as the three fundamental challenges for predicting speciation. It also illustrates the methodological value of predictions in testing and improving conceptual models. We then outline how we might move from the hypothetical speciation machine to a predictive standard model of speciation. Operationalizing, testing, and refining this model will require a concerted shift to large-scale, integrative, and interdisciplinary efforts across the tree of life. This endeavor, paired with technological advances, may reveal apparently stochastic processes to be deterministic, and promises to expand the breadth and depth of our understanding of speciation and more generally, of evolution.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":7.2,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146309/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139721956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimizing Crop Plant Stomatal Density to Mitigate and Adapt to Climate Change.","authors":"Julie Gray, Jessica Dunn","doi":"10.1101/cshperspect.a041672","DOIUrl":"10.1101/cshperspect.a041672","url":null,"abstract":"<p><p>Plants take up carbon dioxide, and lose water, through pores on their leaf surfaces called stomata. We have a good understanding of the biochemical signals that control the production of stomata, and over the past decade, these have been manipulated to produce crops with fewer stomata. Crops with abnormally low stomatal densities require less water to produce the same yield and have enhanced drought tolerance. These \"water-saver\" crops also have improved salinity tolerance and are expected to have increased resistance to some diseases. We calculate that the widespread adoption of water-saver crops could lead to reductions in greenhouse gas emissions equivalent to a maximum of 0.5 GtCO<sub>2</sub>/yr and thus could help to mitigate the impacts of climate change on agriculture and food security through protecting yields in stressful environments and requiring fewer inputs.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":7.2,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146307/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71478933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}