Cold Spring Harbor perspectives in biology最新文献

筛选
英文 中文
Astrocyte Regulation of Cerebral Blood Flow in Health and Disease. 健康与疾病中星形胶质细胞对脑血流的调节
IF 6.9 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2024-04-01 DOI: 10.1101/cshperspect.a041354
Anusha Mishra, Grant R Gordon, Brian A MacVicar, Eric A Newman
{"title":"Astrocyte Regulation of Cerebral Blood Flow in Health and Disease.","authors":"Anusha Mishra, Grant R Gordon, Brian A MacVicar, Eric A Newman","doi":"10.1101/cshperspect.a041354","DOIUrl":"10.1101/cshperspect.a041354","url":null,"abstract":"<p><p>Astrocytes play an important role in controlling microvascular diameter and regulating local cerebral blood flow (CBF) in several physiological and pathological scenarios. Neurotransmitters released from active neurons evoke Ca<sup>2+</sup> increases in astrocytes, leading to the release of vasoactive metabolites of arachidonic acid (AA) from astrocyte endfeet. Synthesis of prostaglandin E<sub>2</sub> (PGE<sub>2</sub>) and epoxyeicosatrienoic acids (EETs) dilate blood vessels while 20-hydroxyeicosatetraenoic acid (20-HETE) constricts vessels. The release of K<sup>+</sup> from astrocyte endfeet also contributes to vasodilation or constriction in a concentration-dependent manner. Whether astrocytes exert a vasodilation or vasoconstriction depends on the local microenvironment, including the metabolic status, the concentration of Ca<sup>2+</sup> reached in the endfoot, and the resting vascular tone. Astrocytes also contribute to the generation of steady-state vascular tone. Tonic release of both 20-HETE and ATP from astrocytes constricts vascular smooth muscle cells, generating vessel tone, whereas tone-dependent elevations in endfoot Ca<sup>2+</sup> produce tonic prostaglandin dilators to limit the degree of constriction. Under pathological conditions, including Alzheimer's disease, epilepsy, stroke, and diabetes, disruption of normal astrocyte physiology can compromise the regulation of blood flow, with negative consequences for neurological function.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982716/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139691419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering Crassulacean Acid Metabolism in C3 and C4 Plants. C3 和 C4 植物的纤酸代谢工程。
IF 7.2 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2024-04-01 DOI: 10.1101/cshperspect.a041674
Xiaohan Yang, Yang Liu, Guoliang Yuan, David J Weston, Gerald A Tuskan
{"title":"Engineering Crassulacean Acid Metabolism in C<sub>3</sub> and C<sub>4</sub> Plants.","authors":"Xiaohan Yang, Yang Liu, Guoliang Yuan, David J Weston, Gerald A Tuskan","doi":"10.1101/cshperspect.a041674","DOIUrl":"10.1101/cshperspect.a041674","url":null,"abstract":"<p><p>Carbon dioxide (CO<sub>2</sub>) is a major greenhouse gas contributing to changing climatic conditions, which is a grand challenge affecting the security of food, energy, and environment. Photosynthesis plays the central role in plant-based CO<sub>2</sub> reduction. Plants performing CAM (crassulacean acid metabolism) photosynthesis have a much higher water use efficiency than those performing C<sub>3</sub> or C<sub>4</sub> photosynthesis. Therefore, there is a great potential for engineering CAM in C<sub>3</sub> or C<sub>4</sub> crops to enhance food/biomass production and carbon sequestration on arid, semiarid, abandoned, or marginal lands. Recent progresses in CAM plant genomics and evolution research, along with new advances in plant biotechnology, have provided a solid foundation for bioengineering to convert C<sub>3</sub>/C<sub>4</sub> plants into CAM plants. Here, we first discuss the potential strategies for CAM engineering based on our current understanding of CAM evolution. Then we describe the technical approaches for engineering CAM in C<sub>3</sub> and C<sub>4</sub> plants, with a focus on an iterative four-step pipeline: (1) designing gene modules, (2) building the gene modules and transforming them into target plants, (3) testing the engineered plants through an integration of molecular biology, biochemistry, metabolism, and physiological approaches, and (4) learning to inform the next round of CAM engineering. Finally, we discuss the challenges and future opportunities for fully realizing the potential of CAM engineering.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":7.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138486859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phospholipase Modulation of Synaptic Membrane Landscape: Driving Force Behind Memory Formation? 磷脂酶对突触膜景观的调节:记忆形成背后的驱动力?
IF 7.2 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2024-04-01 DOI: 10.1101/cshperspect.a041405
Tristan P Wallis, Frédéric A Meunier
{"title":"Phospholipase Modulation of Synaptic Membrane Landscape: Driving Force Behind Memory Formation?","authors":"Tristan P Wallis, Frédéric A Meunier","doi":"10.1101/cshperspect.a041405","DOIUrl":"10.1101/cshperspect.a041405","url":null,"abstract":"<p><p>The synapse is the communication unit of the brain, linking billions of neurons through trillions of synaptic connections. The lipid landscape of the synaptic membrane underpins neurotransmitter release through the exocytic fusion of neurotransmitter-containing vesicles, endocytic recycling of these synaptic vesicles, and the postsynaptic response following binding of the neurotransmitter to specialized receptors. How the connected brain can learn and acquire memories through synaptic plasticity is unresolved. Phospholipases, and especially the phospholipase A1 isoform DDHD2, have recently been shown to play a critical role in memory acquisition through the generation of saturated free fatty acids such as myristic and palmitic acids. This emerging synaptic plasticity pathway suggests that phospholipases cannot only respond to synaptic activity by altering the phospholipid landscape but also contribute to the establishment of long-term memories in our brain.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":7.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982704/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139048451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic Coupling of Mate Recognition Systems in the Genomic Era. 基因组时代配偶识别系统的遗传耦合。
IF 7.2 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2024-04-01 DOI: 10.1101/cshperspect.a041437
Michael G Ritchie, Roger K Butlin
{"title":"Genetic Coupling of Mate Recognition Systems in the Genomic Era.","authors":"Michael G Ritchie, Roger K Butlin","doi":"10.1101/cshperspect.a041437","DOIUrl":"10.1101/cshperspect.a041437","url":null,"abstract":"<p><p>The concept of \"genetic coupling\" in mate recognition systems arose in the 1960s as a potential mechanism to maintain coordination between signals and receivers during evolutionary divergence. At its most basic it proposed that the same genes might influence trait and preference, and therefore mutations could result in coordinated changes in both traits. Since then, the concept has expanded in scope and is often used to include linkage or genetic correlation between recognition system components. Here we review evidence for genetic coupling, concentrating on proposed examples of a common genetic basis for signals and preferences. Mapping studies have identified several examples of tight genetic linkage between genomic regions influencing signals and preferences, or assortative mating. Whether this extends as far as demonstrating pleiotropy remains a more open question. Some studies, notably of <i>Drosophila</i>, have identified genes in the sex determination pathway and in pheromonal communication where single loci can influence both signals and preferences. This may be based on isoform divergence, in which sex- and tissue-specific effects are facilitated by alternative spicing, or on regulatory divergence. Hence it is not clear that such examples provide compelling evidence of pleiotropy in the sense that \"magic mutations\" could maintain trait coordination. Rather, coevolution may be facilitated by regulatory divergence but require different mutations or coevolution across isoforms. Reconsidering the logic of genetic coupling, it may be that pleiotropy could actually be less effective than linkage if distinct but associated variants allow molecular coevolution to occur more readily than potentially \"unbalanced\" mutations in single genes. Genetic manipulation or studies of mutation order effects during divergence are challenging but perhaps the only way to disentangle the role of pleiotropy versus close linkage in coordinated trait divergence.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":7.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982690/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139691422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Does Selfing Affect the Pace and Process of Speciation? 自交如何影响物种演化的速度和过程?
IF 7.2 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2024-03-19 DOI: 10.1101/cshperspect.a041426
Lucas Marie-Orleach, Sylvain Glémin, Marie K. Brandrud, Anne K. Brysting, Abel Gizaw, A. Lovisa S. Gustafsson, Loren H. Rieseberg, Christian Brochmann, Siri Birkeland
{"title":"How Does Selfing Affect the Pace and Process of Speciation?","authors":"Lucas Marie-Orleach, Sylvain Glémin, Marie K. Brandrud, Anne K. Brysting, Abel Gizaw, A. Lovisa S. Gustafsson, Loren H. Rieseberg, Christian Brochmann, Siri Birkeland","doi":"10.1101/cshperspect.a041426","DOIUrl":"https://doi.org/10.1101/cshperspect.a041426","url":null,"abstract":"Surprisingly little attention has been given to the impact of selfing on speciation, even though selfing reduces gene flow between populations and affects other key population genetics parameters. Here we review recent theoretical work and compile empirical data from crossing experiments and genomic and phylogenetic studies to assess the effect of mating systems on the speciation process. In accordance with theoretical predictions, we find that accumulation of hybrid incompatibilities seems to be accelerated in selfers, but there is so far limited empirical support for a predicted bias toward underdominant loci. Phylogenetic evidence is scarce and contradictory, including studies suggesting that selfing either promotes or hampers speciation rate. Further studies are therefore required, which in addition to measures of reproductive barrier strength and selfing rate should routinely include estimates of demographic history and genetic divergence as a proxy for divergence time.","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":"18 1","pages":""},"PeriodicalIF":7.2,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140165426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulators of Oligodendrocyte Differentiation 少突胶质细胞分化的调节因子
IF 7.2 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2024-03-19 DOI: 10.1101/cshperspect.a041358
Ben Emery, Teresa L. Wood
{"title":"Regulators of Oligodendrocyte Differentiation","authors":"Ben Emery, Teresa L. Wood","doi":"10.1101/cshperspect.a041358","DOIUrl":"https://doi.org/10.1101/cshperspect.a041358","url":null,"abstract":"Myelination has evolved as a mechanism to ensure fast and efficient propagation of nerve impulses along axons. Within the central nervous system (CNS), myelination is carried out by highly specialized glial cells, oligodendrocytes. The formation of myelin is a prolonged aspect of CNS development that occurs well into adulthood in humans, continuing throughout life in response to injury or as a component of neuroplasticity. The timing of myelination is tightly tied to the generation of oligodendrocytes through the differentiation of their committed progenitors, oligodendrocyte precursor cells (OPCs), which reside throughout the developing and adult CNS. In this article, we summarize our current understanding of some of the signals and pathways that regulate the differentiation of OPCs, and thus the myelination of CNS axons.","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":"28 1","pages":""},"PeriodicalIF":7.2,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140165424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Schwann Cell Development and Myelination 许旺细胞的发育和髓鞘化
IF 7.2 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2024-03-19 DOI: 10.1101/cshperspect.a041360
James Salzer, M. Laura Feltri, Claire Jacob
{"title":"Schwann Cell Development and Myelination","authors":"James Salzer, M. Laura Feltri, Claire Jacob","doi":"10.1101/cshperspect.a041360","DOIUrl":"https://doi.org/10.1101/cshperspect.a041360","url":null,"abstract":"Glial cells in the peripheral nervous system (PNS), which arise from the neural crest, include axon-associated Schwann cells (SCs) in nerves, synapse-associated SCs at the neuromuscular junction, enteric glia, perikaryon-associated satellite cells in ganglia, and boundary cap cells at the border between the central nervous system (CNS) and the PNS. Here, we focus on axon-associated SCs. These SCs progress through a series of formative stages, which culminate in the generation of myelinating SCs that wrap large-caliber axons and of nonmyelinating (Remak) SCs that enclose multiple, small-caliber axons. In this work, we describe SC development, extrinsic signals from the axon and extracellular matrix (ECM) and the intracellular signaling pathways they activate that regulate SC development, and the morphogenesis and organization of myelinating SCs and the myelin sheath. We review the impact of SCs on the biology and integrity of axons and their emerging role in regulating peripheral nerve architecture. Finally, we explain how transcription and epigenetic factors control and fine-tune SC development and myelination.","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":"22 1","pages":""},"PeriodicalIF":7.2,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140165551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Important Is Variation in Extrinsic Reproductive Isolation to the Process of Speciation? 外在生殖隔离的变异对物种演化过程有多重要?
IF 7.2 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2024-03-19 DOI: 10.1101/cshperspect.a041430
Linyi Zhang, Etsuko Nonaka, Megan Higgie, Scott Egan
{"title":"How Important Is Variation in Extrinsic Reproductive Isolation to the Process of Speciation?","authors":"Linyi Zhang, Etsuko Nonaka, Megan Higgie, Scott Egan","doi":"10.1101/cshperspect.a041430","DOIUrl":"https://doi.org/10.1101/cshperspect.a041430","url":null,"abstract":"The strength of reproductive isolation (RI) between two or more lineages during the process of speciation can vary by the ecological conditions. However, most speciation research has been limited to studying how ecologically dependent RI varies among a handful of broadly categorized environments. Very few studies consider the variability of RI and its effects on speciation at finer scales—that is, within each environment due to spatial or temporal environmental heterogeneity. Such variation in RI across time and/or space may inhibit speciation through leaky reproductive barriers or promote speciation by facilitating reinforcement. To investigate this overlooked aspect of speciation research, we conducted a literature review of existing studies of variation in RI in the field and then conducted individual-based simulations to examine how variation in hybrid fitness across time and space affects the degree of gene flow. Our simulations indicate that the presence of variation in hybrid fitness across space and time often leads to an increase in gene flow compared to scenarios where hybrid fitness remains static. This observation can be attributed to the convex relationship between the degree of gene flow and the strength of selection on hybrids. Our simulations also show that the effect of variation in RI on facilitating gene flow is most pronounced when RI, on average, is relatively low. This finding suggests that it could serve as an important mechanism to explain why the completion of speciation is often challenging. While direct empirical evidence documenting variation in extrinsic RI is limited, we contend that it is a prevalent yet underexplored phenomenon. We support this argument by proposing common scenarios in which RI is likely to exhibit variability and thus influence the process of speciation.","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":"37 1","pages":""},"PeriodicalIF":7.2,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140165453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Negative Coupling: The Coincidence of Premating Isolating Barriers Can Reduce Reproductive Isolation 负耦合:预产期隔离障碍的巧合可以减少生殖隔离
IF 7.2 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2024-03-19 DOI: 10.1101/cshperspect.a041435
Thomas G. Aubier, Michael Kopp, Isaac J. Linn, Oscar Puebla, Marina Rafajlović, Maria R. Servedio
{"title":"Negative Coupling: The Coincidence of Premating Isolating Barriers Can Reduce Reproductive Isolation","authors":"Thomas G. Aubier, Michael Kopp, Isaac J. Linn, Oscar Puebla, Marina Rafajlović, Maria R. Servedio","doi":"10.1101/cshperspect.a041435","DOIUrl":"https://doi.org/10.1101/cshperspect.a041435","url":null,"abstract":"Speciation can be mediated by a variety of reproductive barriers, and the interaction among different barriers has often been shown to enhance overall reproductive isolation, a process referred to as “coupling.” Here, we analyze a population genetics model to study the establishment of linkage disequilibrium (LD) among loci involved in multiple premating barriers, an aspect that has received little theoretical attention to date. We consider a simple genetic framework underlying two distinct premating barriers, each encoded by a preference locus and its associated mating trait locus. We show that their interaction can lead to a decrease in overall reproductive isolation relative to a situation with a single barrier, a process we call “negative coupling.” More specifically, in our model, negative coupling results either from sexual selection that reduces divergence at all loci, or from reduced LD that occurs because the presence of many females with “mismatched” preferences causes the mating success of recombinant males to become high. Interestingly, the latter effect may even cause LD among preference loci to become negative when recombination rates among loci are low. We conclude that coincident reproductive barriers may not necessarily reinforce each other, and that the underlying loci may not necessarily develop a positive association.","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":"156 1","pages":""},"PeriodicalIF":7.2,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140165428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combining Molecular, Macroevolutionary, and Macroecological Perspectives on the Generation of Diversity 结合分子、宏观进化和宏观生态学视角看多样性的产生
IF 7.2 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2024-03-19 DOI: 10.1101/cshperspect.a041453
Lindell Bromham
{"title":"Combining Molecular, Macroevolutionary, and Macroecological Perspectives on the Generation of Diversity","authors":"Lindell Bromham","doi":"10.1101/cshperspect.a041453","DOIUrl":"https://doi.org/10.1101/cshperspect.a041453","url":null,"abstract":"Charles Darwin presented a unified process of diversification driven by the gradual accumulation of heritable variation. The growth in DNA databases and the increase in genomic sequencing, combined with advances in molecular phylogenetic analyses, gives us an opportunity to realize Darwin's vision, connecting the generation of variation to the diversification of lineages. The rate of molecular evolution is correlated with the rate of diversification across animals and plants, but the relationship between genome change and speciation is complex: Mutation rates evolve in response to life history and niche; substitution rates are influenced by mutation, selection, and population size; rates of acquisition of reproductive isolation vary between populations; and traits, niches, and distribution can influence diversification rates. The connection between mutation rate and diversification rate is one part of the complex and varied story of speciation, which has theoretical importance for understanding the generation of biodiversity and also practical impacts on the use of DNA to understand the dynamics of speciation over macroevolutionary timescales.","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":"8 1","pages":""},"PeriodicalIF":7.2,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140165712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信