Cold Spring Harbor perspectives in biology最新文献

筛选
英文 中文
Mechanisms of Alternative Lengthening of Telomeres. 端粒替代性延长的机制
IF 6.9 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2025-01-07 DOI: 10.1101/cshperspect.a041690
Roderick J O'Sullivan, Roger A Greenberg
{"title":"Mechanisms of Alternative Lengthening of Telomeres.","authors":"Roderick J O'Sullivan, Roger A Greenberg","doi":"10.1101/cshperspect.a041690","DOIUrl":"10.1101/cshperspect.a041690","url":null,"abstract":"<p><p>In recent years, significant advances have been made in understanding the intricate details of the mechanisms underlying alternative lengthening of telomeres (ALT). Studies of a specialized DNA strand break repair mechanism, known as break-induced replication, and the advent of telomere-specific DNA damaging strategies and proteomic methodologies to profile the ribonucleoprotein composition of telomeres enabled the discovery of networks of proteins that coordinate the stepwise homology-directed DNA repair and DNA synthesis processes of ALT. These networks couple mediators of homologous recombination, DNA template-switching, long-range template-directed DNA synthesis, and DNA strand resolution with SUMO-dependent liquid condensate formation to create discrete nuclear bodies where telomere extension occurs. This review will discuss the recent findings of how these networks may cooperate to mediate telomere extension by the ALT mechanism and their impact on telomere function and integrity in ALT cancer cells.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694749/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calculating Relatedness: A Pedigree of Definitions. 计算亲缘关系:定义谱系
IF 6.9 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2025-01-07 DOI: 10.1101/cshperspect.a041667
Matishalin Patel, J Arvid Ågren
{"title":"Calculating Relatedness: A Pedigree of Definitions.","authors":"Matishalin Patel, J Arvid Ågren","doi":"10.1101/cshperspect.a041667","DOIUrl":"10.1101/cshperspect.a041667","url":null,"abstract":"<p><p>Biology can be viewed from both an organismal and a genic perspective. A good example is W.D. Hamilton's work on inclusive fitness and kin selection, which puts relatedness at the heart of our understanding of social behavior. Relatedness mediates how much an actor should value a specific behavior's effect on a relative compared to the cost incurred to itself. Despite its key explanatory role, relatedness is also a concept marred with misunderstanding. Part of the problem has been that the term has been used in different ways by different people. To help address this, we survey the history of how relatedness has been formally modeled, paying particular attention to how it is conceptualized from both a gene-centric and an organism-centric point of view.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694744/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Satellite Glial Cells: No Longer the Most Overlooked Glia. 卫星胶质细胞:卫星胶质细胞:不再是最被忽视的胶质细胞
IF 6.9 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2025-01-07 DOI: 10.1101/cshperspect.a041367
Susan J Birren, Lisa V Goodrich, Rosalind A Segal
{"title":"Satellite Glial Cells: No Longer the Most Overlooked Glia.","authors":"Susan J Birren, Lisa V Goodrich, Rosalind A Segal","doi":"10.1101/cshperspect.a041367","DOIUrl":"10.1101/cshperspect.a041367","url":null,"abstract":"<p><p>Many glial biologists consider glia the neglected cells of the nervous system. Among all the glia of the central and peripheral nervous system, satellite glia may be the most often overlooked. Satellite glial cells (SGCs) are located in ganglia of the cranial nerves and the peripheral nervous system. These small cells surround the cell bodies of neurons in the trigeminal ganglia (TG), spiral ganglia, nodose and petrosal ganglia, sympathetic ganglia, and dorsal root ganglia (DRG). Essential SGC features include their intimate connections with the associated neurons, their small size, and their derivation from neural crest cells. Yet SGCs also exhibit tissue-specific properties and can change rapidly, particularly in response to injury. To illustrate the range of SGC functions, we will focus on three types: those of the spiral, sympathetic, and DRG, and consider both their shared features and those that differ based on location.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694750/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141070873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the Influence of Host Radiation on Symbiont Speciation through Parasites of Species Flocks. 通过种群寄生虫了解宿主辐射对共生体物种变异的影响
IF 6.9 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2025-01-07 DOI: 10.1101/cshperspect.a041450
Maarten P M Vanhove, Nikol Kmentová, Christel Faes, Jorge M O Fernandes, Christoph Hahn, Niel Hens, Antoine Pariselle, Stephan Koblmüller
{"title":"Understanding the Influence of Host Radiation on Symbiont Speciation through Parasites of Species Flocks.","authors":"Maarten P M Vanhove, Nikol Kmentová, Christel Faes, Jorge M O Fernandes, Christoph Hahn, Niel Hens, Antoine Pariselle, Stephan Koblmüller","doi":"10.1101/cshperspect.a041450","DOIUrl":"10.1101/cshperspect.a041450","url":null,"abstract":"<p><p>(Adaptive) radiations have attracted evolutionary biologists for a long time as ideal model systems to study patterns and processes of often rapid speciation. However, whereas a wealth of (sometimes already genome-scale) data is available for host radiations, very few studies target the patterns of diversification in their symbionts, even though they would be excellent models to study symbiont speciation. Our review summarizes what little is known about general patterns of symbiont diversification in often iconic adaptive host radiations and to what extent these patterns are dependent on the evolutionary trajectories of their hosts. We identify research gaps that need to be addressed in the future and discuss the potential of approaches not yet typically used in these study systems, such as epidemiological disease modeling and new omics technologies, for significantly advancing our understanding of these complex eco-evolutionary relationships.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694742/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141070874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perisynaptic Schwann Cells: Guardians of Neuromuscular Junction Integrity and Function in Health and Disease. 突触周围许旺细胞:健康和疾病中神经肌肉接头完整性和功能的守护者
IF 6.9 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2025-01-07 DOI: 10.1101/cshperspect.a041362
Thomas W Gould, Chien-Ping Ko, Hugh Willison, Richard Robitaille
{"title":"Perisynaptic Schwann Cells: Guardians of Neuromuscular Junction Integrity and Function in Health and Disease.","authors":"Thomas W Gould, Chien-Ping Ko, Hugh Willison, Richard Robitaille","doi":"10.1101/cshperspect.a041362","DOIUrl":"10.1101/cshperspect.a041362","url":null,"abstract":"<p><p>The neuromuscular junction (NMJ) is a highly reliable synapse to carry the control of the motor commands of the nervous system over the muscles. Its development, organization, and synaptic properties are highly structured and regulated to support such reliability and efficacy. Yet, the NMJ is also highly plastic, able to react to injury, and able to adapt to changes. This balance between structural stability and synaptic efficacy on one hand and structural plasticity and repair on another hand is made possible by perisynaptic Schwann cells (PSCs), glial cells at this synapse. They regulate synaptic efficacy and structural plasticity of the NMJ in a dynamic, bidirectional manner owing to their ability to decode synaptic transmission and by their interactions with trophic-related factors. Alteration of these fundamental roles of PSCs is also important in the maladapted response of NMJs in various diseases and in aging.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694759/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Telomere Dynamics in Zebrafish Aging and Disease. 斑马鱼衰老和疾病的端粒动力学。
IF 6.9 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2024-12-18 DOI: 10.1101/cshperspect.a041696
Miguel Godinho Ferreira
{"title":"Telomere Dynamics in Zebrafish Aging and Disease.","authors":"Miguel Godinho Ferreira","doi":"10.1101/cshperspect.a041696","DOIUrl":"https://doi.org/10.1101/cshperspect.a041696","url":null,"abstract":"<p><p>Fish telomere lengths vary significantly across the numerous species, implicating diverse life strategies and environmental adaptations. Zebrafish have telomere dynamics that are comparable to humans and are emerging as a key model in which to unravel the systemic effects of telomere shortening on aging and interorgan communication. Here, we discuss zebrafish telomere biology, focusing on the organismal impact of telomere attrition beyond cellular senescence, with particular emphasis on how telomeric shortening in specific tissues can unleash widespread organ dysfunction and disease. This highlights a novel aspect of tissue communication, whereby telomere shortening in one organ can propagate through biological networks, influencing the aging process systemically. These discoveries position zebrafish as a valuable model for studying the complex interactions between telomeres, aging, and tissue cross talk, providing important insights with direct relevance to human health and longevity.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maintaining Telomeres without Telomerase in Drosophila: Novel Mechanisms and Rapid Evolution to Save a Genus. 果蝇在没有端粒酶的情况下维持端粒:拯救一个属的新机制和快速进化。
IF 6.9 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2024-12-18 DOI: 10.1101/cshperspect.a041708
Stefano Cacchione, Giovanni Cenci, Anne-Marie Dion-Côté, Daniel A Barbash, Grazia Daniela Raffa
{"title":"Maintaining Telomeres without Telomerase in <i>Drosophila</i>: Novel Mechanisms and Rapid Evolution to Save a Genus.","authors":"Stefano Cacchione, Giovanni Cenci, Anne-Marie Dion-Côté, Daniel A Barbash, Grazia Daniela Raffa","doi":"10.1101/cshperspect.a041708","DOIUrl":"https://doi.org/10.1101/cshperspect.a041708","url":null,"abstract":"<p><p>Telomere maintenance is crucial for preventing the linear eukaryotic chromosome ends from being mistaken for DNA double-strand breaks, thereby avoiding chromosome fusions and the loss of genetic material. Unlike most eukaryotes that use telomerase for telomere maintenance, <i>Drosophila</i> relies on retrotransposable elements-specifically <i>HeT-A</i>, <i>TAHRE</i>, and <i>TART</i> (collectively referred to as HTT)-which are regulated and precisely targeted to chromosome ends. <i>Drosophila</i> telomere protection is mediated by a set of fast-evolving proteins, termed terminin, which bind to chromosome termini without sequence specificity, balancing DNA damage response factors to avoid erroneous repair mechanisms. This unique telomere capping mechanism highlights an alternative evolutionary strategy to compensate for telomerase loss. The modulation of recombination and transcription at <i>Drosophila</i> telomeres offers insights into the diverse mechanisms of telomere maintenance. Recent studies at the population level have begun to reveal the architecture of telomere arrays, the diversity among the HTT subfamilies, and their relative frequencies, aiming to understand whether and how these elements have evolved to reach an equilibrium with the host and to resolve genetic conflicts. Further studies may shed light on the complex relationships between telomere transcription, recombination, and maintenance, underscoring the adaptive plasticity of telomeric complexes across eukaryotes.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Telomere Protection in Stem Cells. 干细胞的端粒保护。
IF 6.9 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2024-12-18 DOI: 10.1101/cshperspect.a041686
Marta Markiewicz-Potoczny, Eros Lazzerini Denchi
{"title":"Telomere Protection in Stem Cells.","authors":"Marta Markiewicz-Potoczny, Eros Lazzerini Denchi","doi":"10.1101/cshperspect.a041686","DOIUrl":"https://doi.org/10.1101/cshperspect.a041686","url":null,"abstract":"<p><p>The natural ends of chromosomes resemble double-strand breaks (DSBs), which would activate the DNA damage response (DDR) pathway without the protection provided by a specialized protein complex called shelterin. Over the past decades, extensive research has uncovered the mechanism of action and the high degree of specialization provided by the shelterin complex to prevent aberrant activation of DNA repair machinery at chromosome ends in somatic cells. However, recent findings have revealed striking differences in the mechanisms of end protection in stem cells compared to somatic cells. In this review, we discuss what is known about the differences between stem cells and somatic cells regarding chromosome end protection.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Life and Death without Telomerase: The Saccharomyces cerevisiae Model. 没有端粒酶的生与死:酿酒酵母模型。
IF 6.9 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2024-12-18 DOI: 10.1101/cshperspect.a041699
Veronica Martinez-Fernandez, Aurélia Barascu, Maria Teresa Teixeira
{"title":"Life and Death without Telomerase: The <i>Saccharomyces cerevisiae</i> Model.","authors":"Veronica Martinez-Fernandez, Aurélia Barascu, Maria Teresa Teixeira","doi":"10.1101/cshperspect.a041699","DOIUrl":"https://doi.org/10.1101/cshperspect.a041699","url":null,"abstract":"<p><p><i>Saccharomyces cerevisiae</i>, a model organism in telomere biology, has been instrumental in pioneering a comprehensive understanding of the molecular processes that occur in the absence of telomerase across eukaryotes. This exploration spans investigations into telomere dynamics, intracellular signaling cascades, and organelle-mediated responses, elucidating their impact on proliferative capacity, genome stability, and cellular variability. Through the lens of budding yeast, numerous sources of cellular heterogeneity have been identified, dissected, and modeled, shedding light on the risks associated with telomeric state transitions, including the evasion of senescence. Moreover, the unraveling of the intricate interplay between the nucleus and other organelles upon telomerase inactivation has provided insights into eukaryotic evolution and cellular communication networks. These contributions, akin to milestones achieved using budding yeast, such as the discovery of the cell cycle, DNA damage checkpoint mechanisms, and DNA replication and repair processes, have been of paramount significance for the telomere field. Particularly, these insights extend to understanding replicative senescence as an anticancer mechanism in humans and enhancing our understanding of eukaryotes' evolution.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Hybridization in Species Formation and Persistence. 杂交在物种形成和持续存在中的作用。
IF 6.9 2区 生物学
Cold Spring Harbor perspectives in biology Pub Date : 2024-12-02 DOI: 10.1101/cshperspect.a041445
Joshua V Peñalba, Anna Runemark, Joana I Meier, Pooja Singh, Guinevere O U Wogan, Rosa Sánchez-Guillén, James Mallet, Sina J Rometsch, Mitra Menon, Ole Seehausen, Jonna Kulmuni, Ricardo J Pereira
{"title":"The Role of Hybridization in Species Formation and Persistence.","authors":"Joshua V Peñalba, Anna Runemark, Joana I Meier, Pooja Singh, Guinevere O U Wogan, Rosa Sánchez-Guillén, James Mallet, Sina J Rometsch, Mitra Menon, Ole Seehausen, Jonna Kulmuni, Ricardo J Pereira","doi":"10.1101/cshperspect.a041445","DOIUrl":"10.1101/cshperspect.a041445","url":null,"abstract":"<p><p>Hybridization, or interbreeding between different taxa, was traditionally considered to be rare and to have a largely detrimental impact on biodiversity, sometimes leading to the breakdown of reproductive isolation and even to the reversal of speciation. However, modern genomic and analytical methods have shown that hybridization is common in some of the most diverse clades across the tree of life, sometimes leading to rapid increase of phenotypic variability, to introgression of adaptive alleles, to the formation of hybrid species, and even to entire species radiations. In this review, we identify consensus among diverse research programs to show how the field has progressed. Hybridization is a multifaceted evolutionary process that can strongly influence species formation and facilitate adaptation and persistence of species in a rapidly changing world. Progress on testing this hypothesis will require cooperation among different subdisciplines.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610762/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140027592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信