Proteins of the Triadic Excitation-Contraction Coupling Complex in Skeletal Muscle.

IF 6.9 2区 生物学 Q1 CELL BIOLOGY
Ting Chang, Rachel Sue Zhen Yee, George G Rodney, Susan L Hamilton
{"title":"Proteins of the Triadic Excitation-Contraction Coupling Complex in Skeletal Muscle.","authors":"Ting Chang, Rachel Sue Zhen Yee, George G Rodney, Susan L Hamilton","doi":"10.1101/cshperspect.a041482","DOIUrl":null,"url":null,"abstract":"<p><p>Excitation-contraction coupling (ECC) in skeletal muscle is mediated by mechanical coupling between the L-type voltage-dependent Ca<sup>2+</sup> channel (Ca<sub>V</sub>1.1) in the transverse tubules and the Ca<sup>2+</sup> release channel (RYR1) in the sarcoplasmic reticulum (SR). However, ECC complexes are much more complicated than just these two ion channels. Triadic Ca<sup>2+</sup> release units (CRUs) that mediate ECC in skeletal muscle are allosterically regulated complexes of ion channels, cytoplasmic modulators, SR transmembrane proteins, and lumenal Ca<sup>2+</sup> buffers. While RYR1, Ca<sub>V</sub>1.1α<sub>1s</sub>, and Ca<sub>V</sub>1.1β<sub>1a</sub>, the SH3 and cysteine-rich domain protein (STAC3) and junctophilin (JPH1 and/or JPH2) are required for voltage-gated Ca<sup>2+</sup> release, other auxiliary proteins modulate this process. In this review, we discuss what is known about the proteins in the triadic protein complex, their roles in ECC, and the mutations in the ECC proteins that give rise to skeletal muscle myopathies.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041482","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Excitation-contraction coupling (ECC) in skeletal muscle is mediated by mechanical coupling between the L-type voltage-dependent Ca2+ channel (CaV1.1) in the transverse tubules and the Ca2+ release channel (RYR1) in the sarcoplasmic reticulum (SR). However, ECC complexes are much more complicated than just these two ion channels. Triadic Ca2+ release units (CRUs) that mediate ECC in skeletal muscle are allosterically regulated complexes of ion channels, cytoplasmic modulators, SR transmembrane proteins, and lumenal Ca2+ buffers. While RYR1, CaV1.1α1s, and CaV1.1β1a, the SH3 and cysteine-rich domain protein (STAC3) and junctophilin (JPH1 and/or JPH2) are required for voltage-gated Ca2+ release, other auxiliary proteins modulate this process. In this review, we discuss what is known about the proteins in the triadic protein complex, their roles in ECC, and the mutations in the ECC proteins that give rise to skeletal muscle myopathies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.00
自引率
1.40%
发文量
56
审稿时长
3-8 weeks
期刊介绍: Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信