Role of Microglia in Central Nervous System Development and Plasticity.

IF 6.9 2区 生物学 Q1 CELL BIOLOGY
Dorothy P Schafer, Beth Stevens, Mariko L Bennett, Frederick C Bennett
{"title":"Role of Microglia in Central Nervous System Development and Plasticity.","authors":"Dorothy P Schafer, Beth Stevens, Mariko L Bennett, Frederick C Bennett","doi":"10.1101/cshperspect.a041810","DOIUrl":null,"url":null,"abstract":"<p><p>The nervous system comprises a remarkably diverse and complex network of cell types, which must communicate with one another with speed, reliability, and precision. Thus, the developmental patterning and maintenance of these cell populations and their connections with one another pose a rather formidable task. Emerging data implicate microglia, the resident myeloid-derived cells of the central nervous system (CNS), in spatial patterning and synaptic wiring throughout the healthy, developing, and adult CNS. Importantly, new tools to specifically manipulate microglia function have revealed that these cellular functions translate, on a systems level, to effects on overall behavior. In this review, we give a historical perspective of work to identify microglia function in the healthy CNS, and highlight exciting new discoveries about their contributions to CNS development, maintenance, and plasticity.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041810","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The nervous system comprises a remarkably diverse and complex network of cell types, which must communicate with one another with speed, reliability, and precision. Thus, the developmental patterning and maintenance of these cell populations and their connections with one another pose a rather formidable task. Emerging data implicate microglia, the resident myeloid-derived cells of the central nervous system (CNS), in spatial patterning and synaptic wiring throughout the healthy, developing, and adult CNS. Importantly, new tools to specifically manipulate microglia function have revealed that these cellular functions translate, on a systems level, to effects on overall behavior. In this review, we give a historical perspective of work to identify microglia function in the healthy CNS, and highlight exciting new discoveries about their contributions to CNS development, maintenance, and plasticity.

小胶质细胞在中枢神经系统发育和可塑性中的作用
神经系统由极其多样和复杂的细胞类型网络组成,它们必须快速、可靠和精确地相互交流。因此,这些细胞群的发育模式和维持以及它们之间的联系是一项相当艰巨的任务。新出现的数据表明,小胶质细胞--中枢神经系统(CNS)的常驻髓源性细胞--参与了整个健康、发育中和成年中枢神经系统的空间模式化和突触连接。重要的是,特异性操纵小胶质细胞功能的新工具揭示了这些细胞功能在系统层面上对整体行为的影响。在这篇综述中,我们将从历史的视角来探讨小胶质细胞在健康中枢神经系统中的功能,并重点介绍有关它们对中枢神经系统发育、维持和可塑性的贡献的令人兴奋的新发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.00
自引率
1.40%
发文量
56
审稿时长
3-8 weeks
期刊介绍: Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信