优化作物气孔密度以缓解和适应气候变化。

IF 6.9 2区 生物学 Q1 CELL BIOLOGY
Julie Gray, Jessica Dunn
{"title":"优化作物气孔密度以缓解和适应气候变化。","authors":"Julie Gray, Jessica Dunn","doi":"10.1101/cshperspect.a041672","DOIUrl":null,"url":null,"abstract":"<p><p>Plants take up carbon dioxide, and lose water, through pores on their leaf surfaces called stomata. We have a good understanding of the biochemical signals that control the production of stomata, and over the past decade, these have been manipulated to produce crops with fewer stomata. Crops with abnormally low stomatal densities require less water to produce the same yield and have enhanced drought tolerance. These \"water-saver\" crops also have improved salinity tolerance and are expected to have increased resistance to some diseases. We calculate that the widespread adoption of water-saver crops could lead to reductions in greenhouse gas emissions equivalent to a maximum of 0.5 GtCO<sub>2</sub>/yr and thus could help to mitigate the impacts of climate change on agriculture and food security through protecting yields in stressful environments and requiring fewer inputs.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146307/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimizing Crop Plant Stomatal Density to Mitigate and Adapt to Climate Change.\",\"authors\":\"Julie Gray, Jessica Dunn\",\"doi\":\"10.1101/cshperspect.a041672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants take up carbon dioxide, and lose water, through pores on their leaf surfaces called stomata. We have a good understanding of the biochemical signals that control the production of stomata, and over the past decade, these have been manipulated to produce crops with fewer stomata. Crops with abnormally low stomatal densities require less water to produce the same yield and have enhanced drought tolerance. These \\\"water-saver\\\" crops also have improved salinity tolerance and are expected to have increased resistance to some diseases. We calculate that the widespread adoption of water-saver crops could lead to reductions in greenhouse gas emissions equivalent to a maximum of 0.5 GtCO<sub>2</sub>/yr and thus could help to mitigate the impacts of climate change on agriculture and food security through protecting yields in stressful environments and requiring fewer inputs.</p>\",\"PeriodicalId\":10494,\"journal\":{\"name\":\"Cold Spring Harbor perspectives in biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146307/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor perspectives in biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/cshperspect.a041672\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041672","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

植物通过叶片表面的气孔吸收二氧化碳并失去水分。我们对控制气孔产生的生物化学信号有着很好的了解,在过去的十年里,这些信号被用来生产气孔较少的作物。气孔密度异常低的作物需要较少的水分才能产生相同的产量,并且耐旱性增强。这些“节水型”作物的耐盐性也有所提高,预计对某些疾病的抵抗力也会增强。我们计算出,节水作物的广泛采用可能导致温室气体排放量减少,最多相当于每年0.5 GtCO2/年,从而有助于通过在压力环境中保护产量和减少投入来减轻气候变化对农业和粮食安全的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Crop Plant Stomatal Density to Mitigate and Adapt to Climate Change.

Plants take up carbon dioxide, and lose water, through pores on their leaf surfaces called stomata. We have a good understanding of the biochemical signals that control the production of stomata, and over the past decade, these have been manipulated to produce crops with fewer stomata. Crops with abnormally low stomatal densities require less water to produce the same yield and have enhanced drought tolerance. These "water-saver" crops also have improved salinity tolerance and are expected to have increased resistance to some diseases. We calculate that the widespread adoption of water-saver crops could lead to reductions in greenhouse gas emissions equivalent to a maximum of 0.5 GtCO2/yr and thus could help to mitigate the impacts of climate change on agriculture and food security through protecting yields in stressful environments and requiring fewer inputs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.00
自引率
1.40%
发文量
56
审稿时长
3-8 weeks
期刊介绍: Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信