Mechanochemical Principles of Epidermal Tissue Dynamics.

IF 6.9 2区 生物学 Q1 CELL BIOLOGY
Carien M Niessen, M Lisa Manning, Sara A Wickström
{"title":"Mechanochemical Principles of Epidermal Tissue Dynamics.","authors":"Carien M Niessen, M Lisa Manning, Sara A Wickström","doi":"10.1101/cshperspect.a041518","DOIUrl":null,"url":null,"abstract":"<p><p>How tissue architecture and function emerge during development and what facilitates their resilience and homeostatic dynamics during adulthood is a fundamental question in biology. Biological tissue barriers such as the skin epidermis have evolved strategies that integrate dynamic cellular turnover with high resilience against mechanical and chemical stresses. Interestingly, both dynamic and resilient functions are generated by a defined set of molecular and cell-scale processes, including adhesion and cytoskeletal remodeling, cell shape changes, cell division, and cell movement. These traits are coordinated in space and time with dynamic changes in cell fates and cell mechanics that are generated by contractile and adhesive forces. In this review, we discuss how studies on epidermal morphogenesis and homeostasis have contributed to our understanding of the dynamic interplay between biochemical and mechanical signals during tissue morphogenesis and homeostasis, and how the material properties of tissues dictate how cells respond to these active stresses, thereby linking cell-scale behaviors to tissue- and organismal-scale changes.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041518","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

How tissue architecture and function emerge during development and what facilitates their resilience and homeostatic dynamics during adulthood is a fundamental question in biology. Biological tissue barriers such as the skin epidermis have evolved strategies that integrate dynamic cellular turnover with high resilience against mechanical and chemical stresses. Interestingly, both dynamic and resilient functions are generated by a defined set of molecular and cell-scale processes, including adhesion and cytoskeletal remodeling, cell shape changes, cell division, and cell movement. These traits are coordinated in space and time with dynamic changes in cell fates and cell mechanics that are generated by contractile and adhesive forces. In this review, we discuss how studies on epidermal morphogenesis and homeostasis have contributed to our understanding of the dynamic interplay between biochemical and mechanical signals during tissue morphogenesis and homeostasis, and how the material properties of tissues dictate how cells respond to these active stresses, thereby linking cell-scale behaviors to tissue- and organismal-scale changes.

表皮组织动力学的机械化学原理
组织结构和功能是如何在发育过程中形成的,以及是什么促进了它们在成年期的恢复能力和动态平衡,这是生物学中的一个基本问题。皮肤表皮等生物组织屏障在进化过程中,将细胞的动态更替与对机械和化学压力的高弹性结合在一起。有趣的是,动态和复原功能都是由一组确定的分子和细胞尺度过程产生的,包括粘附和细胞骨架重塑、细胞形状变化、细胞分裂和细胞运动。这些特征在空间和时间上与细胞命运和细胞力学的动态变化相协调,而细胞命运和细胞力学的动态变化是由收缩力和粘附力产生的。在这篇综述中,我们将讨论对表皮形态发生和稳态的研究如何有助于我们理解在组织形态发生和稳态过程中生化和机械信号之间的动态相互作用,以及组织的材料特性如何决定细胞如何对这些主动应力做出反应,从而将细胞尺度的行为与组织和生物体尺度的变化联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.00
自引率
1.40%
发文量
56
审稿时长
3-8 weeks
期刊介绍: Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信