{"title":"Models of High-Grade Serous Ovarian Carcinoma.","authors":"Oscar J Pundel, Benjamin G Neel","doi":"10.1101/cshperspect.a041949","DOIUrl":"https://doi.org/10.1101/cshperspect.a041949","url":null,"abstract":"<p><p>High-grade serous ovarian carcinoma (HGSC) remains an incompletely understood, highly lethal disease. Historically, a lack of fidelitous in vitro and in vivo models representing HGSC biology and therapy response has been a major barrier to progress. As we discuss below, multiple (if not most) early studies used-and some investigators continue to use-human \"ovarian cancer cell lines\" that lack key genomic/genetic features of HGSC, rendering their conclusions questionable. The frequently deployed ID8 syngeneic mouse model is similarly suspect, as it derives from ovarian surface epithelium (OSE) and is <i>Trp53</i> wild-type. In contrast, most, if not all, HGSC arises in fallopian tube epithelium (FTE), and bona fide HGSC is universally <i>TP53</i> mutant or silenced. Over the past 10 years, attempts have been made to rectify these historical deficiencies, including careful assessment of the genetic composition of standard ovarian cancer cell lines and the development of mouse and human organoids, genetically engineered mouse models (GEMMs), and patient-derived xenografts (PDXs). In this review, we discuss these advances, exploring their differences, strengths, and weaknesses. We also describe \"next-generation\" approaches to more faithfully model HGSC cells in the context of a more realistic tumor microenvironment.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145238495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kayla V Hamilton, Akiko Shimamura, Jessica A Pollard
{"title":"Genetic Predisposition to Hematologic Malignancies.","authors":"Kayla V Hamilton, Akiko Shimamura, Jessica A Pollard","doi":"10.1101/cshperspect.a041585","DOIUrl":"10.1101/cshperspect.a041585","url":null,"abstract":"<p><p>Hematologic malignancies (HMs) have been increasingly recognized in association with an underlying genetic predisposition syndrome (GPS) in individuals of all ages. It is critical for hematology and oncology providers to be aware of the diagnostic findings, physical examination findings, and aspects of family history that raise suspicion for an underlying GPS. Moreover, recognition of how somatic gene panel testing, frequently done at the time of HM diagnosis, may raise suspicion for an underlying germline condition based on the mutation profile reported, is prudent. With knowledge of an underlying germline condition, the chemotherapy used for a given HM may be impacted and the role of hematopoietic stem cell transplant more critically considered. Off-therapy monitoring after HM treatment is completed will also likely be impacted. In this work, we review key features of several GPSs associated with increased risks for HM while also outlining the diagnostic workup to identify GPSs and treatment considerations for affected patients. Armed with this knowledge, treating providers may evaluate the possibility of a GPS in patients with leukemia/lymphoma and modify their treatment plan accordingly.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335613/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143390338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ralph J DeBerardinis, Karen H Vousden, Navdeep S Chandel
{"title":"Cancer Metabolism: Aspirations for the Coming Decade.","authors":"Ralph J DeBerardinis, Karen H Vousden, Navdeep S Chandel","doi":"10.1101/cshperspect.a041555","DOIUrl":"10.1101/cshperspect.a041555","url":null,"abstract":"<p><p>Fueled by technological and conceptual advancements over the past two decades, research in cancer metabolism has begun to answer questions dating back to the time of Otto Warburg. But, as with most fields, new discoveries lead to new questions. This review outlines the emerging challenges that we predict will drive the next few decades of cancer metabolism research. These include developing a more realistic understanding of how metabolic activities are compartmentalized within cells, tissues, and organs; how metabolic preferences in tumors evolve during cancer progression from nascent, premalignant lesions to advanced, metastatic disease; and, most importantly, how we can best translate basic observations from preclinical models into novel therapies that benefit patients with cancer. With modern tools and an incredible amount of talent focusing on these problems, the upcoming decades should bring transformative discoveries.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616689/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lucienne Chatenoud, Kevan C Herold, Jean-François Bach, Jeffrey A Bluestone
{"title":"The Teplizumab Saga: The Challenge of Not Getting Lost in Clinical Translation.","authors":"Lucienne Chatenoud, Kevan C Herold, Jean-François Bach, Jeffrey A Bluestone","doi":"10.1101/cshperspect.a041600","DOIUrl":"10.1101/cshperspect.a041600","url":null,"abstract":"<p><p>In November 2022, teplizumab became the first drug approved to delay the course of any autoimmune disease and to change the course of type 1 diabetes (T1D) since the discovery of insulin. The path to its approval took more than 30 years with both successes and failures along the way that would have normally led to its abandonment in other circumstances. Development of the drug was based on studies in preclinical models and parallels efforts in transplantation. From a series of innovative adaptations in response to issues related to adverse events and immunogenicity, humanized Fc receptors (FcR) nonbinding antibodies were developed with improved clinical outcomes and safety as well as new mechanisms. Importantly, as a result of these developments, teplizumab has been able to achieve efficacy over extended periods of time without global immune suppression. The approval of teplizumab represents a significant first step toward achieving escape from T1D and, in the future, reversal of the disease.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12487705/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"α-Synuclein Biomarkers for Parkinson's Disease.","authors":"Alexandra Lodge, Julian Agin-Liebes","doi":"10.1101/cshperspect.a041944","DOIUrl":"https://doi.org/10.1101/cshperspect.a041944","url":null,"abstract":"<p><p>α-Synuclein (α-syn) biomarkers show great promise as diagnostic tools for Parkinson's disease (PD). In recent years, a large body of evidence has validated their efficacy as diagnostic tools for PD and other synucleinopathies and has shown potential for use in patients with isolated prodromal symptoms of PD, such as rapid eye movement (REM) sleep behavior disorder and hyposmia, and further illuminates the pathophysiology of both idiopathic and genetic causes. Various detection methods have been deployed, predominantly immunohistochemistry and α-syn seed amplification assays. α-Syn has been shown to be detectable in many different tissues and biofluids in PD patients, each with benefits and limitations for practical use. α-Syn biomarker studies have shown sensitivities for diagnosis of PD and specificity against healthy controls up to 100%. However, lack of standardization of methods of detection currently limits interlaboratory validation of results. Verification of these assays could lead to more widespread inclusion of these modalities to detect α-syn into biological definitions of PD and provide frameworks for developing disease-modifying therapies. In this review, we discuss the current state of α-syn biomarkers and highlight their potential use in clinical practice and research settings, while identifying further work that is needed in this field.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145124490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Animal Models of Parkinson's Disease.","authors":"Valina L Dawson, Ted M Dawson","doi":"10.1101/cshperspect.a041644","DOIUrl":"https://doi.org/10.1101/cshperspect.a041644","url":null,"abstract":"<p><p>Parkinson's disease (PD) is a complex genetic disorder that is associated with environmental risk factors and aging. Vertebrate genetic models, especially in mice, has aided the study of autosomal-dominant and autosomal-recessive PD. Mice are capable of exhibiting a broad range of phenotypes and coupled with their conserved genetic and anatomical structures provides unparalleled molecular and pathological tool to model human disease. These models used in combination with aging and PD-associated toxins have expanded our understanding of PD pathogenesis. Attempts to refine PD animal models using conditional approaches have yielded in vivo nigrostriatal degeneration that is instructive in ordering pathogenic signaling and in developing therapeutic strategies to cure or halt the disease. α-Synuclein preformed fibril (PFF) injections, which induce the aggregation of endogenous α-synuclein, remarkably recapitulate pathological processes observed in human PD. Here, we provide an overview of the generation and characterization of transgenic and knockout mice and the α-synuclein PFF models used to study PD followed by molecular insights that have been gleamed these PD mouse models.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145124474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Parkinson's Disease, Second Edition.","authors":"Serge Przedborski, Stanley Fahn","doi":"10.1101/cshperspect.a041954","DOIUrl":"https://doi.org/10.1101/cshperspect.a041954","url":null,"abstract":"<p><p>Parkinson's disease (PD), once stigmatized and hidden, is now widely acknowledged by patients and recognized by the public. Yet, fundamental questions about the disease's origins, mechanisms, and progression remain unanswered. The second edition of <i>Parkinson's Disease</i> provides an integrated, accessible resource for clinicians and research scientists. It offers a comprehensive bench-to-bedside overview of PD, with contributions from leading experts in the clinical spectrum and the pathology, genetics, and neurobiological aspects of the condition. New chapters reflect recent advances in areas such as disease progression, biomarkers, cell-based therapies, lipid biology, and the gut-brain axis. The book emphasizes the need for interdisciplinary collaboration and serves as an educational entry point to the field and a strategic guide to future PD research.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145124504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cancer Therapies Targeting Cellular Metabolism.","authors":"Benjamin Morris, Alejandro Gutierrez","doi":"10.1101/cshperspect.a041657","DOIUrl":"10.1101/cshperspect.a041657","url":null,"abstract":"<p><p>Cancer is caused by mutations that drive aberrant growth, proliferation, and invasion, thus overriding regulatory mechanisms that normally link these processes to organismal needs and cellular physiology. This imposes demands for the production of energy and biomass and for survival in microenvironments that are often nonphysiologic and nutrient-poor, which are met by rewiring of cellular metabolism. The resultant dependence of tumor cells on altered metabolism can induce sensitivity to specific metabolic perturbations that can be exploited for cancer therapy. Some cancers are caused by mutations that impart a novel function to metabolic enzymes, leading to the production of a tumor-promoting metabolite that is dispensable in normal cells, representing an ideal therapeutic target. Tumors can also exploit metabolic regulation of cellular immunity to evade antitumor immune responses, and deciphering this biology has revealed potential targets for therapeutic intervention. Here, we discuss a number of illustrative examples highlighting the therapeutic potential and the challenges of targeting metabolism for cancer therapy.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401054/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Who Are the Space Invaders? Planetary Protection and the Role of Biological Interactions between Extraterrestrial and Terrestrial Biospheres.","authors":"D E Betsy Pugel, John D Rummel","doi":"10.1101/cshperspect.a041626","DOIUrl":"10.1101/cshperspect.a041626","url":null,"abstract":"<p><p>Exploring our solar system and returning pieces of it to Earth is a central part of the existential quest to search for life beyond our home planet. Understanding the biosafety and biocontamination implications of landing on a planetary body or in bringing pieces of our solar system back to our home planet are the two themes that are central to planetary protection, a discipline that is unique to spacefaring nations. The nature of planetary protection is twofold: (1) to ensure that we minimize our own terrestrial microbial footprint on other planets and moons (planetary bodies) in our solar system (forward contamination), and (2) to ensure that we minimize the potential impact of returning samples from another planet or moon to Earth (backward contamination). The discipline of planetary protection focuses on who is the biological \"invader\" and when does their arrival indicate an \"invasion\"? The degree to which there is potential for biological or organic interactions that result in biocontamination or changes in biosafety posture is the central topic of this work.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":"15 9","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401046/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144945414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A History of Cancer Research: Cancer Cell Growth and Metabolism.","authors":"Joseph Lipsick","doi":"10.1101/cshperspect.a035782","DOIUrl":"10.1101/cshperspect.a035782","url":null,"abstract":"<p><p>Dysregulation of cell growth and metabolic changes are a feature of tumorigenesis. Studies over the past 50 years have mapped the pathways that control cell growth and metabolism and revealed how these are altered in cancer. In this excerpt from his forthcoming book on the history of cancer research, Joe Lipsick looks at how we got here-from early work on insulin and growth factor receptor signaling to the discovery of phosphatidyl inositol 3-kinase (PI 3-kinase), the identification of mTOR as the target of rapamycin, and the unexpected finding that tumors can produce novel \"oncometabolites.\"</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":"15 9","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401045/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144945476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}