{"title":"Lineage-Selective Dependencies in Pediatric Cancers.","authors":"K Elaine Ritter, Adam D Durbin","doi":"10.1101/cshperspect.a041573","DOIUrl":"10.1101/cshperspect.a041573","url":null,"abstract":"<p><p>The quest for effective cancer therapeutics has traditionally centered on targeting mutated or overexpressed oncogenic proteins. However, challenges arise in cancers with low mutational burden or when the mutated oncogene is not conventionally targetable, which are common situations in childhood cancers. This obstacle has sparked large-scale unbiased screens to identify collateral genetic dependencies crucial for cancer cell growth. These screens have revealed promising targets for therapeutic intervention in the form of lineage-selective dependency genes, which may have an expanded therapeutic window compared to pan-lethal dependencies. Many lineage-selective dependencies regulate gene expression and are closely tied to the developmental origins of pediatric tumors. Placing lineage-selective dependencies in a transcriptional network model is helpful for understanding their roles in driving malignant cell behaviors. Here, we discuss the identification of lineage-selective dependencies and how two transcriptional models, core regulatory circuits and gene regulatory networks, can serve as frameworks for understanding their individual and collective actions, particularly in cancers affecting children and young adults.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141161168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matt D Johansen, Claire Hamela, Yi Ding, Laurent Kremer
{"title":"Zebrafish Models for Drug Discovery and Therapeutic Validation against Non-Tuberculous Mycobacteria.","authors":"Matt D Johansen, Claire Hamela, Yi Ding, Laurent Kremer","doi":"10.1101/cshperspect.a041832","DOIUrl":"https://doi.org/10.1101/cshperspect.a041832","url":null,"abstract":"<p><p>The incidence of non-tuberculous mycobacteria (NTM) is increasing globally, often surpassing the incidence of new tuberculosis (TB) cases in developed countries. Most NTM are environmental organisms; however, there are a number of opportunistic and pathogenic species that can cause severe infections in animals and humans. Many NTM are intrinsically resistant to anti-TB therapies and are incredibly difficult to treat, resulting in poor treatment outcomes for these patients. Recent advances in preclinical animal models such as the zebrafish models have led to the discovery of highly active antimicrobial and host-directed therapies (HDTs) targeting NTM infections that can be applied to treat human infections. Here, we summarize recent progress and technological advancements in the discovery and development of antimicrobial drugs and HDTs that have been applied to NTM zebrafish infection models. We highlight the future directions for this increasingly applicable animal model for the discovery of next-generation therapies to treat NTM diseases.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143728970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Developmental Oncology: Principles and Therapy of Cancers of Children and Young Adults.","authors":"Alex Kentsis, Alejandro Gutierrez","doi":"10.1101/cshperspect.a041847","DOIUrl":"https://doi.org/10.1101/cshperspect.a041847","url":null,"abstract":"<p><p>Children and young adults are affected by a number of different cancers. These are developmental in origin and arise, in particular, in susceptible cell types. Recent advances have led to significant progress in our understanding of the underlying causes and the pathogenetic mechanisms involved. This is informing design of therapeutic approaches that offer new hope for patients.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143647594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Threats from the Fungal Kingdom.","authors":"Arturo Casadevall","doi":"10.1101/cshperspect.a041630","DOIUrl":"https://doi.org/10.1101/cshperspect.a041630","url":null,"abstract":"<p><p>The fungal kingdom includes a large set of species with pathogenic potential for humans, plants, and wildlife. Whereas threats from the fungal kingdom to agriculture are appreciated, the potential of fungi to threaten humans, animals, ecosystems, and infrastructure is often unappreciated. Fungal disease and mold damage often follow natural disasters. The threats from the fungal kingdom are amplified by the relative paucity of countermeasures, which includes few antifungal drugs and fungicides and an increasing prevalence of resistance to both. Anthropomorphic climate change resulting in global warming is expected to increase the likelihood and potential number of threats from the fungal kingdom. Preparation against fungal threats requires continued investments in basic research to understand the unique aspects of fungal metabolism, development of vaccines, investment in new drugs and fungicides, and a careful mapping of the natural world to identify the existing taxonomic diversity and their potential for harm.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143647600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julia Segal, James Cronk, Brendan Ball, Greta Forbes, Kailey Jackett, Kathy Li, Alondra Martinez Osorno, Emily San Andres Montalvan, Alice Browne, Jessica Lake, Rosandra N Kaplan
{"title":"Parallels in Canonical Developmental Signaling Pathways between Normal Development and the Tumor Microenvironment.","authors":"Julia Segal, James Cronk, Brendan Ball, Greta Forbes, Kailey Jackett, Kathy Li, Alondra Martinez Osorno, Emily San Andres Montalvan, Alice Browne, Jessica Lake, Rosandra N Kaplan","doi":"10.1101/cshperspect.a041609","DOIUrl":"https://doi.org/10.1101/cshperspect.a041609","url":null,"abstract":"<p><p>The tumor microenvironment (TME) is comprised of both cellular and stromal elements and plays an essential role in the growth, survival, and dissemination of malignancies. The TME is an organized program that develops with a growing tumor, using many processes involved in normal tissue development. In multiple solid tumors, developmental pathways are used to recruit immunosuppressive cells, including immunosuppressive monocytes and neutrophils, tumor-associated macrophages, and regulatory T cells to block the antitumor immune response. In addition, stromal cells sustain tumor growth via trophic support, angiogenesis, repair mechanisms, and associated immunosuppression, driven, at least in part, by canonical developmental signaling pathways. The microenvironmental ecosystem shapes tumor progression from its earliest inception by modulating important programs that dictate tumor behavior, necessitating further consideration when studying the developmental origins of malignancy. Here, we review the role of developmental pathways in the formation and modulation of the TME in pediatric and adult solid tumors, including Wnt, Notch, Hippo, Hedgehog, TGF-β, BMP, SOX, and OCT.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143647598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yoshikazu Nakano, Martin Niethammer, David Eidelberg
{"title":"Imaging of Disease-Related Networks in Parkinson's Disease.","authors":"Yoshikazu Nakano, Martin Niethammer, David Eidelberg","doi":"10.1101/cshperspect.a041841","DOIUrl":"https://doi.org/10.1101/cshperspect.a041841","url":null,"abstract":"<p><p>Functional neuroimaging techniques are increasingly being used to advance the diagnosis and management of Parkinson's disease (PD). Methods such as [<sup>18</sup>F]-fluorodeoxyglucose positron emission tomography (FDG PET), resting-state functional magnetic resonance imaging (rs-fMRI), arterial spin labeling (ASL) MRI, and single-photon emission computed tomography (SPECT) enable the identification of disease-specific patterns like the PD-related pattern (PDRP) and PD cognition-related pattern (PDCP), which correlate with motor and cognitive symptoms. Network analysis using graph theory further elucidates the alterations in brain connectivity associated with PD, providing insights into disease progression and response to treatment. Moreover, these neuroimaging patterns assist in distinguishing PD from atypical parkinsonian syndromes, enhancing diagnostic accuracy. Understanding the impact of genetic variants like <i>LRRK2</i> and <i>GBA1</i> on functional connectivity highlights the potential for precision medicine in PD. As neuroimaging technologies evolve, their integration into clinical practice will be pivotal in the personalized management of PD, offering improved diagnostic precision and targeted therapeutic interventions.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143647596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in Studying Cancer Immunology in Mice.","authors":"Marcus Bosenberg","doi":"10.1101/cshperspect.a041682","DOIUrl":"10.1101/cshperspect.a041682","url":null,"abstract":"<p><p>The recent rise in effective immuno-oncology therapies has increased demand for experimental approaches to model anticancer immunity. A variety of mouse models have been developed and used to study cancer immunology. These include mutagen-induced, genetically engineered, syngeneic, and other models of cancer immunology. These models each have the potential to define mechanistic aspects of anticancer immune responses, identify potential therapeutic targets, and serve as preclinical models for further therapeutic development. Specific benefits and liabilities are characteristic of particular cancer immunology modeling approaches. The optimal choice and utilization of models depends on the cancer immunology scientific question being addressed and can serve to increase mechanistic understanding and development of human immuno-oncology therapies.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875087/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141075768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Toxin-Induced Animal Models of Parkinson's Disease.","authors":"Kim Tieu, Said S Salehe, Harry J Brown","doi":"10.1101/cshperspect.a041643","DOIUrl":"10.1101/cshperspect.a041643","url":null,"abstract":"<p><p>The debilitating motor symptoms of Parkinson's disease (PD) result primarily from the degenerative nigrostriatal dopaminergic pathway. To elucidate pathogenic mechanisms and evaluate therapeutic strategies for PD, numerous animal models have been developed. Understanding the strengths and limitations of these models can significantly impact the choice of model, experimental design, and data interpretation. Herein, we systematically review the literature over the past decade. Some models no longer serve the purpose of PD models. The primary objectives of this review are: First, to assist new investigators in navigating through available animal models and making appropriate selections based on the objective of the study. Emphasis will be placed on common toxin-induced murine models. And second, to provide an overview of basic technical requirements for assessing the nigrostriatal pathway's pathology, structure, and function.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875089/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141476108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Angiogenesis: Biology and Pathology, Second Edition.","authors":"Diane R Bielenberg, Patricia A D'Amore","doi":"10.1101/cshperspect.a041779","DOIUrl":"10.1101/cshperspect.a041779","url":null,"abstract":"<p><p>During development, the first blood vessels are formed by the de novo assembly of angioblasts, endothelial cell precursors, in a process called vasculogenesis. All subsequent sprouting of blood vessels from pre-existing vessels is termed angiogenesis and is a process that continues throughout our lifespan during physiological processes such as wound healing as well as in number of pathological conditions, such as tumor growth and age-related macular degeneration. The circulatory system pumps blood from the heart out to the organs through arteries and deliveries oxygen and nutrients via capillaries to tissues and cells and returns carbon dioxide and waste products back through veins. Each organ varies in its blood vessel patterning, reflecting specialization to accomplish diverse functions including vascular permeability, filtration, immune trafficking, and hormone regulation. Approximately 90% of the fluid extravasated into the interstitium is recycled back to the circulatory system via the unidirectional lymphatic system. Lymphatic capillaries drain fluid, proteins, and cells from tissues and transport this lymph fluid through collecting lymphatic ducts toward lymph nodes. Eventually lymphatic fluid from the right and left lymphatic ducts joins the subclavian veins and recirculates throughout the circulatory system. These two intricate vascular systems, working in cooperation, help to maintain essential bodily functions such as fluid dynamics, tissue homeostasis, blood pressure, metabolism, and immunity. However, dysfunction of these systems is associated with a host of pathological conditions, including cardiovascular diseases, obesity, retinopathy, hypoxia, necrosis, and vascular malformations.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875086/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alina M Winkelkotte, Kamal Al-Shami, Adriano B Chaves-Filho, Felix C E Vogel, Almut Schulze
{"title":"Interactions of Fatty Acid and Cholesterol Metabolism with Cellular Stress Response Pathways in Cancer.","authors":"Alina M Winkelkotte, Kamal Al-Shami, Adriano B Chaves-Filho, Felix C E Vogel, Almut Schulze","doi":"10.1101/cshperspect.a041548","DOIUrl":"10.1101/cshperspect.a041548","url":null,"abstract":"<p><p>Lipids have essential functions as structural components of cellular membranes, as efficient energy storage molecules, and as precursors of signaling mediators. While deregulated glucose and amino acid metabolism in cancer have received substantial attention, the roles of lipids in the metabolic reprogramming of cancer cells are less well understood. However, since the first description of de novo fatty acid biosynthesis in cancer tissues almost 70 years ago, numerous studies have investigated the complex functions of altered lipid metabolism in cancer. Here, we will summarize the mechanisms by which oncogenic signaling pathways regulate fatty acid and cholesterol metabolism to drive rapid proliferation and protect cancer cells from environmental stress. The review also discusses the role of fatty acid metabolism in metabolic plasticity required for the adaptation to changing microenvironments during cancer progression and the connections between fatty acid and cholesterol metabolism and ferroptosis.</p>","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":" ","pages":""},"PeriodicalIF":7.8,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875093/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141476106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}