{"title":"Study of the synthesis techniques and photoluminescence properties of Eu3+- Tb3+ co-doped phosphors: A review","authors":"Deepika Dhaterwal, Mahesh Matoria, Sonika Singh","doi":"10.1016/j.nxnano.2023.100033","DOIUrl":"https://doi.org/10.1016/j.nxnano.2023.100033","url":null,"abstract":"<div><p>Europium (Eu<sup>3+</sup>) and Terbium (Tb<sup>3+</sup>) co-doped phosphors have garnered significant attention in recent years due to their photoluminescence properties and potential applications in various fields. Lanthanide co-doped phosphors are outstanding luminous substances that are implemented to solve the limitations of traditional lighting sources based on sulphide. Over the last decade, increased research emphasis on these phosphors has resulted in a dramatic improvement in their photoluminescence performances, as well as a wide range of luminescence hues that may be used in a number of applications. This review article discusses the evolution of lanthanide (Eu<sup>3+</sup>-Tb<sup>3+</sup>) co-doped phosphors, with an emphasis on the different production techniques, sustained illumination processes, and prospective implications for solid-state lighting innovation. To produce highly crystalline phosphors at low temperatures, the solution combustion approach has proven to be more effective than other techniques including solid state, sol-gel, and hydrothermal procedures, etc. The role of lanthanide ions in photoluminescence tunability has received special attention. In addition, a detailed explanation of the photoluminescent (PL) features of these co-doped luminescent compounds has been described. Along with their uses, their excitation wavelength, emission wavelength, and Commission Internationale de l′éclairage (CIE) coordinates are also mentioned for comparison studies. These co-doped luminescent materials have broad use in several displays and solid-state lighting device applications because of the numerous energy transitions of rare earth ions inside the host lattice. The perusal of this review will be relevant for researchers exploring phosphors.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829523000335/pdfft?md5=b8be27fc7ff31223b9567e4ed09537d6&pid=1-s2.0-S2949829523000335-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140345166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ndivhuwo P. Shumbula , Zakhele B. Ndala , Siyabonga S. Nkabinde , Pumza Mente , Siyasanga Mpelane , Morgan P. Shumbula , Phumlane S. Mdluli , Zikhona Njengele-Tetyana , Phumlani Tetyana , Nosipho Moloto , Mbuso Mlambo
{"title":"Dopamine capped silver/copper bimetallic elongated nanoparticles and their potential application in wound healing","authors":"Ndivhuwo P. Shumbula , Zakhele B. Ndala , Siyabonga S. Nkabinde , Pumza Mente , Siyasanga Mpelane , Morgan P. Shumbula , Phumlane S. Mdluli , Zikhona Njengele-Tetyana , Phumlani Tetyana , Nosipho Moloto , Mbuso Mlambo","doi":"10.1016/j.nxnano.2024.100077","DOIUrl":"https://doi.org/10.1016/j.nxnano.2024.100077","url":null,"abstract":"<div><p>This research introduces a simple method for synthesizing elongated bimetallic nanoparticles comprised of copper (Cu) and silver (Ag) using a co-reduction process involving Cu and Ag ions with hydrazine, alongside dopamine acting as a capping agent. Various characterization techniques were employed to analyze the prepared nanoparticles. The presence of copper and silver was confirmed through UV–vis analysis, while transmission electron microscopy confirmed their elongated morphology. Powder X-ray diffraction analysis indicated alloy formation rather than a mere mixture of the two metals, with both Cu and Ag exhibiting pure metallic properties and face-centered cubic crystal structures. The antimicrobial activity of the synthesized nanostructures against both gram-positive and gram-negative bacteria was evaluated, demonstrating significant antibacterial properties. Furthermore, the cytotoxicity of the nanoparticles was assessed using baby hamster fibroblasts (BHK-21) cells, revealing promising biocompatibility and low cytotoxicity.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294982952400038X/pdfft?md5=823a63db65647ff02875c7f6841b4d70&pid=1-s2.0-S294982952400038X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141250995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei-Ta Huang , Tzu-Yi Lee , Yi-Hong Bai , Hsiang-Chen Wang , Yu-Ying Hung , Kuo-Bin Hong , Fang-Chung Chen , Chia-Feng Lin , Shu-Wei Chang , Jung Han , Jr-Hau He , Yu-Heng Hong , Hao-Chung Kuo
{"title":"InGaN-based blue resonant cavity micro-LEDs with staggered multiple quantum wells enabling full-color and low-crosstalk micro-LED displays","authors":"Wei-Ta Huang , Tzu-Yi Lee , Yi-Hong Bai , Hsiang-Chen Wang , Yu-Ying Hung , Kuo-Bin Hong , Fang-Chung Chen , Chia-Feng Lin , Shu-Wei Chang , Jung Han , Jr-Hau He , Yu-Heng Hong , Hao-Chung Kuo","doi":"10.1016/j.nxnano.2024.100048","DOIUrl":"https://doi.org/10.1016/j.nxnano.2024.100048","url":null,"abstract":"<div><p>Herein, we proposed a unique structural design for indium gallium nitride (InGaN) based blue resonant cavity micro-light-emitting diodes (RC-μ-LEDs), focusing on the design, fabrication, and the relevant performance analyses. The proposed RC-μ-LEDs possess a three-layer staggered InGaN/GaN multiple quantum wells (MQWs) within the nanoporous Distributed Bragg Reflectors (NP-DBRs) and the conventional DBRs, introducing light confinement within such a resonant cavity. A passivation layer using atomic layer deposition (ALD) is adopted to reduce the leakage current from sidewall defects as well. Consequently, for the resulting RC-μ-LEDs, the divergence angle (DA) can be achieved down to 39.04°. While the input current increases from 1.77 A/cm² to 54 A/cm², the peak wavelength will shift from 456.16 nm to 449.18 nm, a blue shift of only 6.98 nm. Finally, we also discuss the temperature-dependent characteristics and the corresponding behaviors of our RC-μ-LEDs. Our demonstrated RC-μ-LEDs exhibit great wavelength stability with a diminished divergence angle, thus enabling full-color and low-crosstalk micro-LED displays for on-demand high-resolution applications.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000093/pdfft?md5=d28a4a59f08cc7b2a4eb430937224746&pid=1-s2.0-S2949829524000093-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139709389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Anand , Bote Vaishali Raosaheb , M.V. Hemantha Reddy , M.P. Sham Aan , K. Ekwipoo , R.S.Praveen Kumar , A.V. Vijayasankar , C.J. Binish , Jobish Johns
{"title":"Unveiling the synergistic effect of zinc oxide and carbon black nanoparticles on the dielectric properties of vulcanized natural rubber","authors":"A. Anand , Bote Vaishali Raosaheb , M.V. Hemantha Reddy , M.P. Sham Aan , K. Ekwipoo , R.S.Praveen Kumar , A.V. Vijayasankar , C.J. Binish , Jobish Johns","doi":"10.1016/j.nxnano.2024.100092","DOIUrl":"10.1016/j.nxnano.2024.100092","url":null,"abstract":"<div><p>Flexible nanocomposite materials were prepared by introducing Zinc Oxide (ZnO) and Carbon Black (CB) as nano-fillers separately into vulcanized natural rubber (NR). The impact of curing agents and filler integration on the structure and electrical characteristics of NR was thoroughly examined. Electrical properties such as dielectric constant, dielectric loss, and ac conductivity were assessed. Pure NR exhibited higher dielectric properties and ac conductivity compared to NR cured with pentane-1,5-deylidenediamine (PDD), which gradually decreased up to a certain threshold due to the immobilization of non-rubber constituents. Dielectric Constant of pure NR decreases from 148.81 to 6.87 upon the addition of 2 ml crosslinking agent into NR. Furthermore, NR composites filled with CB demonstrated lower dielectric properties compared to those filled with ZnO, likely attributed to the polar nature of ZnO. Dielectric Constant of cured NR was increased and exhibited 20.7 for the NR composite with 0.06 % ZnO. The surface roughness of the resulting nanocomposites was analyzed using optical profilometry, and its correlation with dielectric and ac conductivity was investigated.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000536/pdfft?md5=75d17dd69a574f246ec262feb73a3a68&pid=1-s2.0-S2949829524000536-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141951223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aamir Nawaz , Muhammad Babar Taj , Sónia Alexandra Correia Carabineiro
{"title":"Graphitic carbon nitride as an efficient carrier for anti-cancer drug systems: A review","authors":"Aamir Nawaz , Muhammad Babar Taj , Sónia Alexandra Correia Carabineiro","doi":"10.1016/j.nxnano.2024.100074","DOIUrl":"https://doi.org/10.1016/j.nxnano.2024.100074","url":null,"abstract":"<div><p>This review explores the integration of graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) with model drugs and diverse formulations to obtain nanocomposites with potential for cancer therapy. Beyond the synthesis, the study also deals with cancer-affected organs, elucidates mechanisms of drug action and categorizes g-C<sub>3</sub>N<sub>4</sub>-based anti-cancer compositions. The responsive elements contributing to cancer inhibition under the chemotherapeutic influence include reactive oxygen species (ROS), mitochondrial potential, oxidative stress, magnetic responsiveness, profound thermal and photo energy penetration, metal retention toxicity, adenosine triphosphate (ATP) blockade in cancer cells, insulating microenvironments within tumours and immune-modulating antibodies. Notably, breast, prostate, lung, ovary and stomach cancers owe their genesis exclusively to abnormal cell proliferation. Our review reveals that the integration of model drugs (MD) with metal ions (MI) on g-C<sub>3</sub>N<sub>4</sub> (g-C<sub>3</sub>N<sub>4</sub>/MDMI) shows enhanced biological activity, compared to metal ions and model drugs alone. The paper refers to several characterization techniques to decipher intricate data patterns and facilitate explanations of <em>in vitro</em> analyses focused on cancer cell viability and proliferation. Upon analysis of all data, g-C<sub>3</sub>N<sub>4</sub> emerges as a compelling drug carrier, particularly within the anticancer drug delivery systems. This review not only emphasizes the immense potential of g-C<sub>3</sub>N<sub>4</sub> nanocomposites but also paves the way for future advancements in effective cancer treatments.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000354/pdfft?md5=7b6fa939e7d220b79587ec455dc74e1a&pid=1-s2.0-S2949829524000354-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141090972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low-temperature nanocubic MgO synthesis from MgCl2·6H2O waste","authors":"Patrícia Bodanese Prates , Francielly Roussenq Cesconeto , Francisco Alves Vicente , Tatiana Bendo , Luciana Maccarini Schabbach , Humberto Gracher Riella , Márcio Celso Fredel","doi":"10.1016/j.nxnano.2024.100044","DOIUrl":"https://doi.org/10.1016/j.nxnano.2024.100044","url":null,"abstract":"<div><p>The Mg(OH)<sub>2</sub> and MgO nanomaterials were synthesized by precipitation followed by calcination from the industrial waste MgCl<sub>2</sub>·6H<sub>2</sub>O originated from the magnesiothermic reaction of solar-grade silicon (<em>P-waste</em>). A similar synthesis process was carried out in parallel with the commercial precursor MgCl<sub>2</sub>·6H<sub>2</sub>O (<em>P-com</em>) to compare the products obtained with precursors. For the synthesis of Mg(OH)<sub>2</sub> (1st step), aqueous solutions were prepared (low pH for <em>P-waste</em> and natural pH for <em>P-com</em>). NaOH was used as a precipitating agent, and different synthesis temperatures were evaluated (25, 50, 75, and 90 °C). MgO (2nd step) was obtained through calcination at 500 °C for 30 min of previously synthesized Mg(OH)<sub>2.</sub> The <em>P-waste</em> and the two synthesis products (Mg(OH)<sub>2</sub> and MgO) were chemically, thermally, structurally, and morphologically characterized. The results showed that the <em>P-waste</em> is more soluble in an acidic environment, and both precursors present similar thermal behavior and structural profiles. The Mg(OH)<sub>2</sub> obtained in the 1st step of synthesis by both precursors presented the crystalline phases Brucite with lamellar morphology and Halite (NaCl) remained of the precursors. The powders obtained from both precursors in the 2nd step presented the same crystalline phase Periclase (MgO), but different morphologies such as fragmented lamellar for the <em>P-com</em> and cubic for the <em>P-waste</em>. However, the particle size distribution narrows, and the D50 of MgO decreases as a function of increasing the synthesis temperature employed in the 1st step for the <em>P-com</em>. In contrast, the D50 of MgO decreases in the <em>P-waste</em> as a function of low pH. Furthermore, surprisingly, it was observed that the morphology of MgO nanocubes can be obtained from residues and commercial precursors at low calcination temperature and short time (500 °C/30 min) when the Halite remaining from the purification washes is above 4.0% by weight.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000056/pdfft?md5=e2233ef6c95f1d26f3cc90c222e1d19a&pid=1-s2.0-S2949829524000056-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140345337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antibacterial effect of silver nanofluid synthesized using herbal medicine on Pseudomonas aeruginosa and Klebsiella pneumoniae","authors":"Negin Beyronvandi, Fatemeh Pakpour , Davood Ghanbari","doi":"10.1016/j.nxnano.2024.100091","DOIUrl":"10.1016/j.nxnano.2024.100091","url":null,"abstract":"<div><p>The antibacterial property of silver nanofluid was investigated on <em>Pseudomonas aeruginosa</em> and <em>Klebsiella pneumoniae</em>. Silver nanoparticles were synthesized using Nigella sativa (black seeds), green tea, ginger, and garlic as reductant agents through hydrothermal and microwave methods. The physical characteristics of nanoparticles were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), Energy-dispersive X-ray spectroscopy (EDX), and visible ultraviolet spectroscopy (UV–vis). The crystal size measured from SEM analysis on average was about 60 nm and calculated from Debey-Scherer equation was around 43 nm. The nanofluid was prepared by solving the nanoparticles in deionized water. The effect of prepared nanofluid was examined on the growth of two kinds of bacteria that is <em>Pseudomonas aeruginosa</em> and <em>Klebsiella pneumoniae</em> by an antibacterial sensitivity test using the pour plate method. The nanofluids showed a considerable antibacterial effect on <em>Pseudomonas aeruginosa</em> and a moderate effect on <em>Klebsiella pneumoniae</em> on agar plates.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000524/pdfft?md5=8e9ec6b9cfbfa5076989c5c850d45386&pid=1-s2.0-S2949829524000524-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141954318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ning Wang , Enhao Li , Zhaoyuan Lyu , Shichao Ding , Xintian Wang , Hua Wang , Xiao Zhang , Dan Du , Yuehe Lin , Wenlei Zhu
{"title":"Single/dual-atom electrocatalysts for water splitting related reaction at neutral pH","authors":"Ning Wang , Enhao Li , Zhaoyuan Lyu , Shichao Ding , Xintian Wang , Hua Wang , Xiao Zhang , Dan Du , Yuehe Lin , Wenlei Zhu","doi":"10.1016/j.nxnano.2024.100073","DOIUrl":"https://doi.org/10.1016/j.nxnano.2024.100073","url":null,"abstract":"<div><p>The energy crisis and complex environmental issues stemming from fossil fuel consumption have propelled the development and utilization of renewable energy sources, with electrochemical water splitting (EWS) being an effective way and ideal method for producing clean and renewable energy (hydrogen). Up to now, the majority of EWS-related reactions have been studied mainly under acidic and alkaline conditions, which have achieved relatively excellent catalytic activities and efficiencies, albeit with certain safety risks, accompanied by corrosion, contamination, and the generation of waste liquids, in addition to the demand for acid- and alkali-resistant electrocatalytic materials as well as costly anion/cation-exchange membranes. To overcome these shortcomings, the development of advanced catalysts for neutral EWS becomes an attractive and more sustainable option. Unfortunately, there are relatively few theoretical discussions and practical applications of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) as well as other anodic oxidation reactions under neutral conditions. Single/dual-atom electrocatalysts (S/DACs), characterized by maximum metal utilization efficiency, homogeneous active sites, and remarkable synergistic effect, exhibit great potential for EWS-related reactions under neutral conditions. Therefore, we provide a brief mechanistic discussion of neutral HER/OER, focusing on the synthesis, modulation strategies, characterization techniques and current representative applications in EWS-related reactions under neutral conditions, as well as the challenges and prospects of S/DACs. This review may provide some insights to facilitate the practical application of efficient hydrogen production under neutral conditions.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000342/pdfft?md5=62afceeee46e450f032da908762f43e2&pid=1-s2.0-S2949829524000342-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140647272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mehmet Parlak , Hatice Ilkben Ilban , Kivanc Karsli , Emre Unal , Hilmi Volkan Demir
{"title":"Environmental tests and reliability characterization of pixel-sized colloidal QDs for next-generation display technologies","authors":"Mehmet Parlak , Hatice Ilkben Ilban , Kivanc Karsli , Emre Unal , Hilmi Volkan Demir","doi":"10.1016/j.nxnano.2024.100059","DOIUrl":"https://doi.org/10.1016/j.nxnano.2024.100059","url":null,"abstract":"<div><p>This study investigates integrating pixelated colloidal quantum dot (QD) layers into LCDs to enhance color conversion and pixel-level enrichment for future display technologies. We developed miniature prototypes with pixel-sized QD color-converter layers seamlessly integrated into the backlight unit (BLU). The prototypes, featuring red- and green-emitting QD pixels with a single blue LED on glass substrates, underwent rigorous environmental tests such as Thermal Shock Test (TST), Thermal Cycle Test (TCT), High Temperature High Humidity Test (HHT), and Low Temperature Test (LTT). The assessment covered the uniformity of light, spectral radiance, and CIE color coordinates, revealing insights into the performance of the QD layers through the analysis of pre- and post-environmental tests. Despite a decrease in luminance, the QD layers exhibited resilience against rapid temperature variations, enduring thermal shock, and thermal cycle tests without cracking. However, high-temperature and high-humidity conditions revealed susceptibility. Low-temperature stress tests demonstrated stable color gamut coordinates with no discernible shifts. This research fills a notable gap in the existing literature by conducting comprehensive environmental tests on pixel-sized QD utilization in display technologies, providing valuable insights to enhance the stability, durability, and reliability of QD displays.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000202/pdfft?md5=3a47c350aef630c6ae17a2fa1acb5c05&pid=1-s2.0-S2949829524000202-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140638646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Green-synthesis, characterization, and antibacterial activity of Azanza garckeana seed extract silver nanoparticles against vancomycin-resistant Enterococci","authors":"Nana Aishat Yusuf-Omoloye , Folasade Muibat Adeyemi , Waidi Folorunso Sule , Luqmon Azeez , Omotayo Opemipo Oyedara , Abideen Akinkunmi Wahab , Olaoniye Habeebat Ajigbewu , Agbaje Lateef","doi":"10.1016/j.nxnano.2023.100035","DOIUrl":"https://doi.org/10.1016/j.nxnano.2023.100035","url":null,"abstract":"<div><p>The need for alternative treatment of infections caused by vancomycin-resistant <em>Enterococci</em> (VRE) is of global concern. This study used <em>Azanza garckeana</em> (<em>AG</em>) seeds to synthesize silver nanoparticles (AgNPs) with anti-VRE activity. The nanoparticles were characterized using UV-Vis, FTIR, SEM, and EDXRF. Antimicrobial activities, MIC, and MBC were evaluated by agar well and microtiter dilution, respectively. UV-spectroscopy confirmed the presence of peaks at 435 nm for spherical AgNPs. FTIR spectrum showed sharp peaks at 3441, 2936, 2859, 1640, and 1385 cm<sup>−1</sup>, indicating the presence of hydroxyl, methyl, methylene, alkenyl, and alkyl groups in the AgNPs. SEM and EDXRF results revealed particles with clustered crystalline patterns and silver as the highest element present, with nickel also present in very minute amounts. The AgNPs exhibited inhibitory activity against the VRE species at both 50 and 100 µg/ml. Also, MIC values varied between 12.5 µg/ml and 25 µg/ml, while MBC values were 50 µg/ml and 25 µg/ml respectively. Conclusively, <em>A. garckeana</em> AgNPs demonstrated potent antimicrobial activity, suggesting their antimicrobial properties could be utilized in a variety of biomedical applications.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829523000359/pdfft?md5=645d47811fa656fb9fd004008c6fdd51&pid=1-s2.0-S2949829523000359-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140347690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}