Exploring the liposomal encapsulation and enhanced cytotoxicity of selenium nanoparticles against lung cancer cells

Dipti Chirakara , Shriya Lotlikar , Mahalakshmi Nannan , Nageswara Rao Dunna , Sivaramakrishnan Venkatabalasubramanian
{"title":"Exploring the liposomal encapsulation and enhanced cytotoxicity of selenium nanoparticles against lung cancer cells","authors":"Dipti Chirakara ,&nbsp;Shriya Lotlikar ,&nbsp;Mahalakshmi Nannan ,&nbsp;Nageswara Rao Dunna ,&nbsp;Sivaramakrishnan Venkatabalasubramanian","doi":"10.1016/j.nxnano.2024.100121","DOIUrl":null,"url":null,"abstract":"<div><div>Lung cancer is unequivocally the most common cause of cancer-related deaths, surpassing all other types of cancer in terms of mortality rates among both men and women. Although surgery, chemotherapy, and radiation therapy are common treatments, they carry significant risks to healthy cells. The versatile benefits of using lipid-based nanocarrier systems in healthcare, combined with the therapeutic and supportive properties of micronutrients like selenium, have led to the investigation of encapsulating selenium nanoparticles in liposomes (Lip-SeNPs) as a new therapeutic strategy. Using scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS), dynamic light scattering (DLS), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR), the characterisation and stability of the Lip-SeNPs were compared with liposome-free SeNPs. This was followed by their cytotoxicity evaluation against lung cancer cells. The DLS results showed that the synthesised liposome-free SeNPs and Lip-SeNPs were spherical, with size distribution of around 151.2 and 163 nm. The zeta potential values were determined for Lip-SeNPs (-15.7 mV) compared to liposome-free SeNPs (-5.71 mV). FTIR analysis of SeNPs and Lip-SeNPs confirmed valuable information about their surface chemistry and potential structure functionalisation avenues. The augmented results obtained from DLS (homogenous size distribution), Zeta potential (higher negative charge), XRD (no other element interference), and SEM-EDS (53 % selenium encapsulation and negligible agglomeration) further strengthened the stability of the generated Lip-SeNPs compared to liposome-free SeNPs. Furthermore, 74.62 % of the SeNP encapsulation efficiency in liposomes was achieved in this study. In addition, dialysis membrane-based drug release profile studies revealed augmented acidic pH-responsive release profiles of Lip-SeNPs, suggesting a superior bioavailability for drug delivery against lung cancer cells.</div></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":"7 ","pages":"Article 100121"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949829524000822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lung cancer is unequivocally the most common cause of cancer-related deaths, surpassing all other types of cancer in terms of mortality rates among both men and women. Although surgery, chemotherapy, and radiation therapy are common treatments, they carry significant risks to healthy cells. The versatile benefits of using lipid-based nanocarrier systems in healthcare, combined with the therapeutic and supportive properties of micronutrients like selenium, have led to the investigation of encapsulating selenium nanoparticles in liposomes (Lip-SeNPs) as a new therapeutic strategy. Using scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS), dynamic light scattering (DLS), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR), the characterisation and stability of the Lip-SeNPs were compared with liposome-free SeNPs. This was followed by their cytotoxicity evaluation against lung cancer cells. The DLS results showed that the synthesised liposome-free SeNPs and Lip-SeNPs were spherical, with size distribution of around 151.2 and 163 nm. The zeta potential values were determined for Lip-SeNPs (-15.7 mV) compared to liposome-free SeNPs (-5.71 mV). FTIR analysis of SeNPs and Lip-SeNPs confirmed valuable information about their surface chemistry and potential structure functionalisation avenues. The augmented results obtained from DLS (homogenous size distribution), Zeta potential (higher negative charge), XRD (no other element interference), and SEM-EDS (53 % selenium encapsulation and negligible agglomeration) further strengthened the stability of the generated Lip-SeNPs compared to liposome-free SeNPs. Furthermore, 74.62 % of the SeNP encapsulation efficiency in liposomes was achieved in this study. In addition, dialysis membrane-based drug release profile studies revealed augmented acidic pH-responsive release profiles of Lip-SeNPs, suggesting a superior bioavailability for drug delivery against lung cancer cells.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信