Development of conductive thermoplastic elastomer blend nanocomposites for enhanced electromagnetic interference shielding in modern electronics

Sreeja Nath Choudhury , Jasomati Nayak , Aritra Mondal , Aparajita Pal , Soumen Giri , Pallab Banerji , Narayan Ch. Das
{"title":"Development of conductive thermoplastic elastomer blend nanocomposites for enhanced electromagnetic interference shielding in modern electronics","authors":"Sreeja Nath Choudhury ,&nbsp;Jasomati Nayak ,&nbsp;Aritra Mondal ,&nbsp;Aparajita Pal ,&nbsp;Soumen Giri ,&nbsp;Pallab Banerji ,&nbsp;Narayan Ch. Das","doi":"10.1016/j.nxnano.2025.100193","DOIUrl":null,"url":null,"abstract":"<div><div>Conductive thermoplastic elastomer (TPE) nanocomposites are increasingly critical for modern electronics, combining mechanical reinforcement, electrical conductivity, and effective electromagnetic interference (EMI) shielding. This study explores a novel EPDM/HDPE blend reinforced with Vulcan XC-72 conductive carbon black (VCB) to create high-performance nanocomposites. Prepared via melt mixing, these composites exhibit uniform VCB dispersion and robust conductive networks. A percolation threshold at 20 wt% VCB enables a significant increase in DC conductivity from 10<sup>−12</sup> S/cm to 0.03 S/cm at 40 wt% VCB. Mechanical properties also improve, with tensile strength and modulus increasing by 26.42 % and 30.44 %, respectively, at minimal filler concentrations. Thermal stability is enhanced, with VCB delaying oxidative degradation and maintaining structural integrity up to 30 wt%. In EMI shielding, the composites achieve shielding effectiveness of −26.8 dB and −29.5 dB in the X- and Ku-bands, respectively, at 40 wt% VCB. The shielding mechanism more absorption dominated as VCB forms continuous conductive pathways, ensuring superior electromagnetic wave attenuation. These results establish EPDM/HDPE/VCB nanocomposites as lightweight, flexible, and cost-effective materials for advanced EMI shielding and multifunctional applications, meeting the demands of modern communication and electronic devices.</div></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":"7 ","pages":"Article 100193"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949829525000622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conductive thermoplastic elastomer (TPE) nanocomposites are increasingly critical for modern electronics, combining mechanical reinforcement, electrical conductivity, and effective electromagnetic interference (EMI) shielding. This study explores a novel EPDM/HDPE blend reinforced with Vulcan XC-72 conductive carbon black (VCB) to create high-performance nanocomposites. Prepared via melt mixing, these composites exhibit uniform VCB dispersion and robust conductive networks. A percolation threshold at 20 wt% VCB enables a significant increase in DC conductivity from 10−12 S/cm to 0.03 S/cm at 40 wt% VCB. Mechanical properties also improve, with tensile strength and modulus increasing by 26.42 % and 30.44 %, respectively, at minimal filler concentrations. Thermal stability is enhanced, with VCB delaying oxidative degradation and maintaining structural integrity up to 30 wt%. In EMI shielding, the composites achieve shielding effectiveness of −26.8 dB and −29.5 dB in the X- and Ku-bands, respectively, at 40 wt% VCB. The shielding mechanism more absorption dominated as VCB forms continuous conductive pathways, ensuring superior electromagnetic wave attenuation. These results establish EPDM/HDPE/VCB nanocomposites as lightweight, flexible, and cost-effective materials for advanced EMI shielding and multifunctional applications, meeting the demands of modern communication and electronic devices.
导电热塑性弹性体共混纳米复合材料在现代电子中增强电磁干扰屏蔽的研究
导电热塑性弹性体(TPE)纳米复合材料结合了机械增强、导电性和有效的电磁干扰(EMI)屏蔽,在现代电子产品中越来越重要。本研究探索了一种新型EPDM/HDPE共混物与Vulcan XC-72导电炭黑(VCB)增强,以创建高性能纳米复合材料。通过熔体混合制备,这些复合材料具有均匀的VCB分散和坚固的导电网络。20 wt% VCB时的渗透阈值使直流电导率从10 - 12 S/cm显著增加到40 wt% VCB时的0.03 S/cm。力学性能也得到改善,在最小填充剂浓度下,拉伸强度和模量分别提高了26.42 %和30.44 %。热稳定性增强,与VCB延迟氧化降解和保持结构完整性高达30 wt%。在EMI屏蔽方面,当VCB为40 wt%时,复合材料在X波段和ku波段的屏蔽效果分别为- 26.8 dB和- 29.5 dB。屏蔽机制更多的吸收为主,因为VCB形成连续的导电通路,保证了优越的电磁波衰减。这些结果表明,EPDM/HDPE/VCB纳米复合材料是一种轻质、柔性、经济高效的材料,可用于先进的电磁干扰屏蔽和多功能应用,满足现代通信和电子设备的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信