{"title":"Development of conductive thermoplastic elastomer blend nanocomposites for enhanced electromagnetic interference shielding in modern electronics","authors":"Sreeja Nath Choudhury , Jasomati Nayak , Aritra Mondal , Aparajita Pal , Soumen Giri , Pallab Banerji , Narayan Ch. Das","doi":"10.1016/j.nxnano.2025.100193","DOIUrl":null,"url":null,"abstract":"<div><div>Conductive thermoplastic elastomer (TPE) nanocomposites are increasingly critical for modern electronics, combining mechanical reinforcement, electrical conductivity, and effective electromagnetic interference (EMI) shielding. This study explores a novel EPDM/HDPE blend reinforced with Vulcan XC-72 conductive carbon black (VCB) to create high-performance nanocomposites. Prepared via melt mixing, these composites exhibit uniform VCB dispersion and robust conductive networks. A percolation threshold at 20 wt% VCB enables a significant increase in DC conductivity from 10<sup>−12</sup> S/cm to 0.03 S/cm at 40 wt% VCB. Mechanical properties also improve, with tensile strength and modulus increasing by 26.42 % and 30.44 %, respectively, at minimal filler concentrations. Thermal stability is enhanced, with VCB delaying oxidative degradation and maintaining structural integrity up to 30 wt%. In EMI shielding, the composites achieve shielding effectiveness of −26.8 dB and −29.5 dB in the X- and Ku-bands, respectively, at 40 wt% VCB. The shielding mechanism more absorption dominated as VCB forms continuous conductive pathways, ensuring superior electromagnetic wave attenuation. These results establish EPDM/HDPE/VCB nanocomposites as lightweight, flexible, and cost-effective materials for advanced EMI shielding and multifunctional applications, meeting the demands of modern communication and electronic devices.</div></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":"7 ","pages":"Article 100193"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949829525000622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Conductive thermoplastic elastomer (TPE) nanocomposites are increasingly critical for modern electronics, combining mechanical reinforcement, electrical conductivity, and effective electromagnetic interference (EMI) shielding. This study explores a novel EPDM/HDPE blend reinforced with Vulcan XC-72 conductive carbon black (VCB) to create high-performance nanocomposites. Prepared via melt mixing, these composites exhibit uniform VCB dispersion and robust conductive networks. A percolation threshold at 20 wt% VCB enables a significant increase in DC conductivity from 10−12 S/cm to 0.03 S/cm at 40 wt% VCB. Mechanical properties also improve, with tensile strength and modulus increasing by 26.42 % and 30.44 %, respectively, at minimal filler concentrations. Thermal stability is enhanced, with VCB delaying oxidative degradation and maintaining structural integrity up to 30 wt%. In EMI shielding, the composites achieve shielding effectiveness of −26.8 dB and −29.5 dB in the X- and Ku-bands, respectively, at 40 wt% VCB. The shielding mechanism more absorption dominated as VCB forms continuous conductive pathways, ensuring superior electromagnetic wave attenuation. These results establish EPDM/HDPE/VCB nanocomposites as lightweight, flexible, and cost-effective materials for advanced EMI shielding and multifunctional applications, meeting the demands of modern communication and electronic devices.