New Crops最新文献

筛选
英文 中文
Current, faltering, and future strategies for advancing microbiome-assisted sustainable agriculture and environmental resilience 推进微生物组辅助可持续农业和环境复原力的当前、困难和未来战略
New Crops Pub Date : 2024-01-29 DOI: 10.1016/j.ncrops.2024.100013
Ahmad Humayan Kabir , Md. Zakaria Ibne Baki , Bulbul Ahmed , Mohammad Golam Mostofa
{"title":"Current, faltering, and future strategies for advancing microbiome-assisted sustainable agriculture and environmental resilience","authors":"Ahmad Humayan Kabir ,&nbsp;Md. Zakaria Ibne Baki ,&nbsp;Bulbul Ahmed ,&nbsp;Mohammad Golam Mostofa","doi":"10.1016/j.ncrops.2024.100013","DOIUrl":"https://doi.org/10.1016/j.ncrops.2024.100013","url":null,"abstract":"<div><p>Establishing global sustainable agriculture emerges as the primary, indispensable strategy to meet escalating food demands and address environmental preservation amidst the challenges posed by severe climate change. The intricate communities of microorganisms associated with plants, collectively termed the plant microbiome, wield significant influence over the vitality and productivity of plant species. Unleashing the potential of the plant microbiome stands as a pivotal approach to safeguard and rejuvenate our planet. However, the complex nature of microbiome interactions, coupled with their limited persistence in intricate environmental settings due to gaps in understanding or technological limitations, has impeded substantial progress in this field. This review explores innovative and revitalized strategies for harnessing microbiome-based enhancements in crop fitness. Additionally, we illuminate the challenges encountered in deciphering the intricate interplay between the microbiome and its host, particularly in the context of mitigating the adverse influences of climate change on crop resilience. To navigate these complexities, we advocate for a comprehensive approach that considers both host and microbiome-oriented perspectives. This dual-focused strategy aims to overcome current limitations and pave the way toward a future where microbiome intervention forms the bedrock of sustainable agriculture and environmental protection.</p></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949952624000037/pdfft?md5=ff084e54c7f1efb2ee701c9a8a81d9d2&pid=1-s2.0-S2949952624000037-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139936413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ZmMYB56 regulates stomatal closure and drought tolerance in maize seedlings through the transcriptional regulation of ZmTOM7 ZmMYB56 通过 ZmTOM7 的转录调控玉米幼苗的气孔关闭和耐旱性
New Crops Pub Date : 2024-01-29 DOI: 10.1016/j.ncrops.2024.100012
Baozhu Li , Runan Liu , Jiong Liu , Hui Zhang , Yanan Tian , Tingting Chen , Jiaxing Li , Fuhang Jiao , Tengfei Jia , Yingxue Li , Xiangyu Zhang , Han Li , Xiang Zhao , David W. Galbraith , Chun-peng Song
{"title":"ZmMYB56 regulates stomatal closure and drought tolerance in maize seedlings through the transcriptional regulation of ZmTOM7","authors":"Baozhu Li ,&nbsp;Runan Liu ,&nbsp;Jiong Liu ,&nbsp;Hui Zhang ,&nbsp;Yanan Tian ,&nbsp;Tingting Chen ,&nbsp;Jiaxing Li ,&nbsp;Fuhang Jiao ,&nbsp;Tengfei Jia ,&nbsp;Yingxue Li ,&nbsp;Xiangyu Zhang ,&nbsp;Han Li ,&nbsp;Xiang Zhao ,&nbsp;David W. Galbraith ,&nbsp;Chun-peng Song","doi":"10.1016/j.ncrops.2024.100012","DOIUrl":"https://doi.org/10.1016/j.ncrops.2024.100012","url":null,"abstract":"<div><p>The growth and yield of essential crops, including maize, are significantly endangered by drought. Closing stomata, limiting water dissipation, and improving water use efficiency are important components of plant drought responses. In our study, the MYB-like transcription factor ZmMYB56, expressed in maize guard cells, played important roles in regulating stomatal closure and drought tolerance. Mutations in ZmMYB56 triggered elevated stomatal conductance, rapid water loss in isolated leaves, and severe drought sensitivity in plants. ZmMYB56 possesses transcriptional activation activity, and is expressed specifically in stomatal guard cells. As an R2R3 transcription factor, ZmMYB56 can bind the cis-acting element on the <em>ZmTOM7</em> promoter sequence, activating its expression. Correspondingly, the <em>ZmTOM7</em> transcript level is downregulated in <em>Zmmyb56</em> seedlings. Transgenic <em>Arabidopsis</em> plants overexpressing <em>ZmTOM7</em> exhibit limited stomatal conductance and elevated drought tolerance, while the <em>ZmTOM7</em> mutation is linked to higher stomatal conductance and substantial drought sensitivity in maize seedlings. According to these findings, we conclude that <em>ZmTOM7</em> operates as a key target gene of ZmMYB56 and is involved in ZmMYB56-regulated stomatal closure and maize drought tolerance. Our findings regarding the functional mechanisms of maize ZmMYB56 transcription factors in stomatal closure and drought stress enable a potential genetic resource for improving the drought resistance of maize.</p></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949952624000025/pdfft?md5=2bf3c21d86a8bb3b2612f73ec42fe379&pid=1-s2.0-S2949952624000025-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139942225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mycorrhizal signals promote root development dependent on LysM-receptor like kinases in rice 菌根信号对水稻根系发育的促进作用依赖于 LysM 受体激酶
New Crops Pub Date : 2023-12-17 DOI: 10.1016/j.ncrops.2023.12.004
Jiangman He , Huiling Dai , Xiaowei Zhang , Ertao Wang
{"title":"Mycorrhizal signals promote root development dependent on LysM-receptor like kinases in rice","authors":"Jiangman He ,&nbsp;Huiling Dai ,&nbsp;Xiaowei Zhang ,&nbsp;Ertao Wang","doi":"10.1016/j.ncrops.2023.12.004","DOIUrl":"10.1016/j.ncrops.2023.12.004","url":null,"abstract":"<div><p>Roots play a fundamental role in plant growth and development, serving various functions, including anchoring, water absorption, nutrient uptake, and adaptation diverse environmental conditions, such as abiotic stresses and biotic interactions. Arbuscular mycorrhizal (AM) fungi release diffusible signaling molecules known as mycorrhizal factors (Myc factors) to establish communication with plants. Extensive research has established that Myc factors play a pivotal role in orchestrating root architectural changes before fungal colonization occurs. In this study, we investigate the impact of the Myc factor CO4 on the architectural modifications of rice roots. Our findings reveal that CO4 actively promotes the development of crown roots and lateral roots in wild-type rice plants. Furthermore, we have identified that pivotal role of receptors such as OsCERK1, OsMYR1, and OsCEBiP in mediating the stimulatory effects of CO4. Knockout mutants of these receptors exhibit a significant reduction in the number of lateral roots and crown roots with lateral roots, along with decreased sensitivity to CO4. Conversely, the overexpression of OsMYR1 leads to a substantial increase in lateral roots and crown roots with lateral roots, even in the absence of CO4 treatment. We propose that CO4-induced root architecture development offers promising opportunities for enhancing lateral root growth, which, in turn, can promote nutrient uptake through direct Myc factor application.</p></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949952623000080/pdfft?md5=df11a97d6a630a0b25ca903928345754&pid=1-s2.0-S2949952623000080-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139022066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The molecular associations between the SnRK1 complex and carbon/nitrogen metabolism in plants SnRK1 复合物与植物碳/氮代谢之间的分子联系
New Crops Pub Date : 2023-12-15 DOI: 10.1016/j.ncrops.2023.12.003
Chao Han , Honglei Wang , Wen Shi , Ming-Yi Bai
{"title":"The molecular associations between the SnRK1 complex and carbon/nitrogen metabolism in plants","authors":"Chao Han ,&nbsp;Honglei Wang ,&nbsp;Wen Shi ,&nbsp;Ming-Yi Bai","doi":"10.1016/j.ncrops.2023.12.003","DOIUrl":"10.1016/j.ncrops.2023.12.003","url":null,"abstract":"<div><p>Sucrose non-fermenting1 (SNF1)-related kinase 1 (SnRK1) serves as a conserved molecular entity in plants, responding to energy stresses such as prolonged darkness, hypoxia, and photosynthesis inhibition. Its role involves orchestrating transcriptional reprogramming to enhance plant fitness in diverse environments. In this study, we delve into how SnRK1 influences carbon and nitrogen metabolism in <em>Arabidopsis</em> and other crop species through both transcriptional regulation and direct phosphorylation modification. Additionally, we explore the impact of sugar metabolites on SnRK1 activity in plants. The assembly mechanisms of the SnRK1 complex are also investigated by drawing insights from mammalian and yeast systems. Furthermore, we provide a comprehensive summary of the interplay between SnRK1 activity, autophagy, and virus defense. Collectively, our findings illuminate the intricate molecular connections between the SnRK1 complex and carbon/nitrogen metabolism in plants.</p></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949952623000092/pdfft?md5=231b015043421f6cba0b4417cce8030f&pid=1-s2.0-S2949952623000092-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139013098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SMART CROPs 智能作物
New Crops Pub Date : 2023-12-15 DOI: 10.1016/j.ncrops.2023.12.002
Pengtao Wang , Zhi Li , Hao Li , Dale Zhang , Wei Wang , Xiaodong Xu , Qiguang Xie , Zhikun Duan , Xue Xia , Guanghui Guo , Aaqib Shaheen , Yun Zhou , Daojie Wang , Siyi Guo , Zhubing Hu , David W. Galbraith , Chun-Peng Song
{"title":"SMART CROPs","authors":"Pengtao Wang ,&nbsp;Zhi Li ,&nbsp;Hao Li ,&nbsp;Dale Zhang ,&nbsp;Wei Wang ,&nbsp;Xiaodong Xu ,&nbsp;Qiguang Xie ,&nbsp;Zhikun Duan ,&nbsp;Xue Xia ,&nbsp;Guanghui Guo ,&nbsp;Aaqib Shaheen ,&nbsp;Yun Zhou ,&nbsp;Daojie Wang ,&nbsp;Siyi Guo ,&nbsp;Zhubing Hu ,&nbsp;David W. Galbraith ,&nbsp;Chun-Peng Song","doi":"10.1016/j.ncrops.2023.12.002","DOIUrl":"10.1016/j.ncrops.2023.12.002","url":null,"abstract":"<div><p>Crops, because of their sessile lifestyle, inevitably experience dynamic environmental conditions, and their capacity to adapt to these changes is central to their growth, survival, and crop productivity. A crop that has been specifically engineered to be sensitive and rapidly tilt the balance between stress responses and growth regulation is defined as a “SMART CROP.” In examining the demands for crops with the highest yield and quality, efforts have been made to create SMART CROPs in the past decades. In this review, we highlight the mechanisms identified to enhance the properties of smart crops and describe technologies and features underlying the advancement of smart crops.</p></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949952623000079/pdfft?md5=974a7919dbc10973c4dc30546f88301e&pid=1-s2.0-S2949952623000079-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139019738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI breeder: Genomic predictions for crop breeding 人工智能育种专家:作物育种的基因组预测
New Crops Pub Date : 2023-12-14 DOI: 10.1016/j.ncrops.2023.12.005
Wanjie Feng , Pengfei Gao , Xutong Wang
{"title":"AI breeder: Genomic predictions for crop breeding","authors":"Wanjie Feng ,&nbsp;Pengfei Gao ,&nbsp;Xutong Wang","doi":"10.1016/j.ncrops.2023.12.005","DOIUrl":"10.1016/j.ncrops.2023.12.005","url":null,"abstract":"<div><p>The integration of Artificial Intelligence (AI) into crop breeding represents a paradigm shift toward data-driven agricultural practices, aiming to enhance the efficiency and precision of crop improvement. In this perspective, we critically evaluate the impact of genomic prediction models like SoyDNGP (Soybean Deep Neural Genomic Prediction) on crop breeding. We discuss their current applications, challenges, and future potential. Addressing existing obstacles such as optimizing parent selection, accurately predicting the combined effects of multiple traits and genes, advancing explainable deep learning, and incorporating environmental factors, we propose practical approaches to overcome these challenges. Our insights aim to unlock the full potential of AI in genomic prediction, contributing to a comprehensive understanding of AI’s role in agriculture. We advocate for future research efforts that harness AI to cultivate sustainable and equitable food systems.</p></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949952623000109/pdfft?md5=91746d4c5a7b94290de699ab78ee9552&pid=1-s2.0-S2949952623000109-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139021121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inaugural Editorial: New Crops 就职社论:新作物
New Crops Pub Date : 2023-12-07 DOI: 10.1016/j.ncrops.2023.12.001
Zhubing Hu, Chun-peng Song
{"title":"Inaugural Editorial: New Crops","authors":"Zhubing Hu,&nbsp;Chun-peng Song","doi":"10.1016/j.ncrops.2023.12.001","DOIUrl":"10.1016/j.ncrops.2023.12.001","url":null,"abstract":"","PeriodicalId":100953,"journal":{"name":"New Crops","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949952623000067/pdfft?md5=a92583802d96a1e39bb22fab464c5423&pid=1-s2.0-S2949952623000067-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138610102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into plant–microbe interactions in the rhizosphere to promote sustainable agriculture in the new crops era 洞察根圈中植物与微生物的相互作用,促进新作物时代的可持续农业发展
New Crops Pub Date : 2023-11-18 DOI: 10.1016/j.ncrops.2023.11.002
Xiaoyu Shi , Yige Zhao , Mengwei Xu , Liya Ma , Jonathan M. Adams , Yu Shi
{"title":"Insights into plant–microbe interactions in the rhizosphere to promote sustainable agriculture in the new crops era","authors":"Xiaoyu Shi ,&nbsp;Yige Zhao ,&nbsp;Mengwei Xu ,&nbsp;Liya Ma ,&nbsp;Jonathan M. Adams ,&nbsp;Yu Shi","doi":"10.1016/j.ncrops.2023.11.002","DOIUrl":"10.1016/j.ncrops.2023.11.002","url":null,"abstract":"<div><p>Microbes accompany plants throughout their entire lifecycles, from seeds to ripe fruits. Plant–microbe interactions have long been a focus of research in many subdisciplines, leading to thousands of articles that demonstrate the importance of these interactions in agriculture. Here, we review previous findings and discuss future directions and prospects for the application of plant–microbe interactions. These interactions are delineated from multiple perspectives: community composition, interaction pathways, influencing external and endogenous factors, methods and techniques for analysis, and potential targeted applications in agriculture. We propose that exploitation and utilization of core beneficial microbes, artificial microbial community assembly, and in situ regulation of microbiome function will become essential components of agricultural production in the future.</p></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949952623000043/pdfft?md5=d6a86af30a16aa69e24f3b57002fb0da&pid=1-s2.0-S2949952623000043-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139300871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The central role of transcription factors in bridging biotic and abiotic stress responses for plants’ resilience 连接生物和非生物胁迫--转录因子在植物趋同适应中的核心作用
New Crops Pub Date : 2023-11-18 DOI: 10.1016/j.ncrops.2023.11.003
Fei Liu , Mengwei Xi , Tong Liu , Xinyu Wu , Lingyue Ju , Daojie Wang
{"title":"The central role of transcription factors in bridging biotic and abiotic stress responses for plants’ resilience","authors":"Fei Liu ,&nbsp;Mengwei Xi ,&nbsp;Tong Liu ,&nbsp;Xinyu Wu ,&nbsp;Lingyue Ju ,&nbsp;Daojie Wang","doi":"10.1016/j.ncrops.2023.11.003","DOIUrl":"10.1016/j.ncrops.2023.11.003","url":null,"abstract":"<div><p>Throughout their life cycle, plants encounter a myriad of challenges arising from both abiotic and biotic stresses, which significantly impact crop yield and nutritional content. In natural ecological settings, plants often experience simultaneous exposure to multiple stresses, prompting intricate crosstalk interactions between different stress types. While current research predominantly addresses individual stress responses, the nuanced interplay among plants facing multiple stresses remains a subject requiring extensive exploration. Plants exposed to one type of stress have demonstrated the capacity to influence their responses to other stressors, indicating the presence of complex stress response networks shaped by their enduring coexistence with diverse environmental pressures. Within these networks, transcription factors emerge as pivotal regulators of stress-responsive genes, positioned as promising candidates for enhancing crop resilience. Notably, certain transcription factors have exhibited the ability to modulate plant tolerance to a spectrum of stresses, suggesting their potential role as convergence points within regulation networks responding to diverse stresses. Extensively studied transcription factors, including NAC, MYB, WRKY, bHLH, and ERF/DREB, are recognized for their crucial involvement in both abiotic and biotic stress responses. Beyond transcription factors, phytohormone signaling pathways governed by abscisic acid, salicylic acid, jasmonic acid, ethylene, and ROS are pivotal in orchestrating the crosstalk between biotic and abiotic stress signaling. This comprehensive review aims to encapsulate the current progress in understanding the intricate crosstalk dynamics underlying plant responses to abiotic and biotic stresses. Furthermore, it delves into the molecular mechanisms orchestrated by transcription factors to navigate the challenges posed by both abiotic and biotic stressors. The review also explores the involvement of transcription factors in regulating phytohormone signaling pathways, providing a holistic perspective on the multifaceted responses of plants to the complexities of their environmental stresses.</p></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949952623000055/pdfft?md5=ea36c52e56d37a74074a838069376617&pid=1-s2.0-S2949952623000055-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139298573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering synthetic apomixis in different hybrid rice varieties using the Fix strategy 利用固定策略在不同杂交水稻品种中进行人工合成歉收工程
New Crops Pub Date : 2023-11-11 DOI: 10.1016/j.ncrops.2023.11.001
Chaolei Liu , Jian Wang , Hongwei Lu , Yong Huang , Huijing Yan , Huan Liang , Chun Wang , Kejian Wang
{"title":"Engineering synthetic apomixis in different hybrid rice varieties using the Fix strategy","authors":"Chaolei Liu ,&nbsp;Jian Wang ,&nbsp;Hongwei Lu ,&nbsp;Yong Huang ,&nbsp;Huijing Yan ,&nbsp;Huan Liang ,&nbsp;Chun Wang ,&nbsp;Kejian Wang","doi":"10.1016/j.ncrops.2023.11.001","DOIUrl":"10.1016/j.ncrops.2023.11.001","url":null,"abstract":"<div><p>Hybrid rice breeding has significantly increased the yield and stability of rice production. However, due to trait segregation in F2 progeny seeds, the F1 hybrid seeds must be renewed annually. Apomixis is a form of reproduction leading to clonal seeds, which has a revolutionary potential in fixing heterosis and realizing selfretention of hybrid rice seeds. Previously, we successfully engineered synthetic apomixis in rice by combining Mitosis instead of Meiosis (MiMe) with haploid induction (mutation of MATRILINEAL), a strategy known as Fix for Fixation of hybrids. However, only one hybrid rice variety has been tested for the Fix synthetic apomixis system. In this study, we expanded the application of the Fix strategy and achieved synthetic apomixis in multiple hybrid rice varieties. We observed significant variations in seed setting rate across diverse genetic backgrounds and witnessed a remarkable tenfold increase in clonal seed efficiency. Our findings will provide valuable insights into the application of the Fix strategy for synthetic apomixis in hybrid rice.</p></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949952623000031/pdfft?md5=10cf15f35955e01647704c68f7154311&pid=1-s2.0-S2949952623000031-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135669128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信