Wenwen Duan , Kaiwen Li , Jialu Li , Ning Ding , Suting Wang , Yaling Zou , Zihao Zhang , Zhikun Duan , Jingjing Xing
{"title":"利用荧光相关光谱探索植物细胞中的膜蛋白动态","authors":"Wenwen Duan , Kaiwen Li , Jialu Li , Ning Ding , Suting Wang , Yaling Zou , Zihao Zhang , Zhikun Duan , Jingjing Xing","doi":"10.1016/j.ncrops.2024.100032","DOIUrl":null,"url":null,"abstract":"<div><p>Biomolecule interactions and macromolecular rearrangement participate in numerous cellular functions in plants, and resolving the dynamics of plasma membrane proteins represents a central goal in current plant biology. Compared to yeast and mammalian systems, the quantification of heterogeneous distribution and dynamics of membrane proteins in cellular processes remains sparse in plant cells. In this study, we introduce the application of fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) in measuring membrane protein diffusion, concentration and interactions in living plant cell. The review showed FCS/FCCS as a tool for imaging the membrane proteins fused with a fluorescent tag, quantifying the density fluctuation and interactions of membrane proteins in the living cells of plants. Owing to the single-molecular level sensitivity and minimally invasive of FCS/FCCS, their application provides an ideal approach to understanding plant cell membrane lateral organization.</p></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949952624000220/pdfft?md5=8b585007e241f47dc6d0734582e845ea&pid=1-s2.0-S2949952624000220-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring membrane proteins dynamic in plant cells with fluorescence correlation spectroscopy\",\"authors\":\"Wenwen Duan , Kaiwen Li , Jialu Li , Ning Ding , Suting Wang , Yaling Zou , Zihao Zhang , Zhikun Duan , Jingjing Xing\",\"doi\":\"10.1016/j.ncrops.2024.100032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biomolecule interactions and macromolecular rearrangement participate in numerous cellular functions in plants, and resolving the dynamics of plasma membrane proteins represents a central goal in current plant biology. Compared to yeast and mammalian systems, the quantification of heterogeneous distribution and dynamics of membrane proteins in cellular processes remains sparse in plant cells. In this study, we introduce the application of fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) in measuring membrane protein diffusion, concentration and interactions in living plant cell. The review showed FCS/FCCS as a tool for imaging the membrane proteins fused with a fluorescent tag, quantifying the density fluctuation and interactions of membrane proteins in the living cells of plants. Owing to the single-molecular level sensitivity and minimally invasive of FCS/FCCS, their application provides an ideal approach to understanding plant cell membrane lateral organization.</p></div>\",\"PeriodicalId\":100953,\"journal\":{\"name\":\"New Crops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949952624000220/pdfft?md5=8b585007e241f47dc6d0734582e845ea&pid=1-s2.0-S2949952624000220-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Crops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949952624000220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Crops","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949952624000220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring membrane proteins dynamic in plant cells with fluorescence correlation spectroscopy
Biomolecule interactions and macromolecular rearrangement participate in numerous cellular functions in plants, and resolving the dynamics of plasma membrane proteins represents a central goal in current plant biology. Compared to yeast and mammalian systems, the quantification of heterogeneous distribution and dynamics of membrane proteins in cellular processes remains sparse in plant cells. In this study, we introduce the application of fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) in measuring membrane protein diffusion, concentration and interactions in living plant cell. The review showed FCS/FCCS as a tool for imaging the membrane proteins fused with a fluorescent tag, quantifying the density fluctuation and interactions of membrane proteins in the living cells of plants. Owing to the single-molecular level sensitivity and minimally invasive of FCS/FCCS, their application provides an ideal approach to understanding plant cell membrane lateral organization.