Chinese Chemical Letters最新文献

筛选
英文 中文
Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts
IF 9.4 1区 化学
Chinese Chemical Letters Pub Date : 2024-09-19 DOI: 10.1016/j.cclet.2024.110476
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang
{"title":"Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts","authors":"Sanmei Wang ,&nbsp;Yong Zhou ,&nbsp;Hengxin Fang ,&nbsp;Chunyang Nie ,&nbsp;Chang Q Sun ,&nbsp;Biao Wang","doi":"10.1016/j.cclet.2024.110476","DOIUrl":"10.1016/j.cclet.2024.110476","url":null,"abstract":"<div><div>Charge-neutral method (CNM) is extensively used in investigating the performance of catalysts and the mechanism of N<sub>2</sub> electrochemical reduction (NRR). However, disparities remain between the predicted potentials required for NRR by the CNM methods and those observed experimentally, as the CNM method neglects the charge effect from the electrode potential. To address this issue, we employed the constant electrode potential (CEP) method to screen atomic transition metal-N-graphene (M<sub>1</sub>/N-graphene) as NRR electrocatalysts and systematically investigated the underlying catalytic mechanism. Among eight types of M<sub>1</sub>/N-graphene (M<sub>1</sub> = Mo, W, Fe, Re, Ni, Co, V, Cr), W<sub>1</sub>/N-graphene emerges as the most promising NRR electrocatalyst with a limiting potential as low as −0.13 V. Additionally, the W<sub>1</sub>/N-graphene system consistently maintains a positive charge during the reaction due to its Fermi level being higher than that of the electrode. These results better match with the actual circumstances compared to those calculated by conventional CNM method. Thus, our work not only develops a promising electrocatalyst for NRR but also deepens the understanding of the intrinsic electrocatalytic mechanism.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 3","pages":"Article 110476"},"PeriodicalIF":9.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143356835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in semi-heterogenous photocatalysis in organic synthesis 有机合成中半同源光催化技术的最新进展
IF 9.4 1区 化学
Chinese Chemical Letters Pub Date : 2024-09-18 DOI: 10.1016/j.cclet.2024.110469
Jia-Cheng Hou , Wei Cai , Hong-Tao Ji , Li-Juan Ou , Wei-Min He
{"title":"Recent advances in semi-heterogenous photocatalysis in organic synthesis","authors":"Jia-Cheng Hou ,&nbsp;Wei Cai ,&nbsp;Hong-Tao Ji ,&nbsp;Li-Juan Ou ,&nbsp;Wei-Min He","doi":"10.1016/j.cclet.2024.110469","DOIUrl":"10.1016/j.cclet.2024.110469","url":null,"abstract":"<div><div>Semi-heterogeneous photocatalysis has emerged as a powerful and productive platform in organic chemistry, which provides mild and eco-friendly conditions for a diverse range of bond-forming reactions. The synergy of homogeneous catalysts and heterogeneous catalysts inherits their main advantages, such as higher activities, easy separation and superior recyclability. In this review, we summarize the recent advances in recyclable semi-heterogenous protocols for the light promoted bond-forming reactions and identify directions for future research according to the different photocatalysts/metal/redox catalysts involved. Notably, this review is not a comprehensive description of reported literature but aim to highlight and illustrate key concepts, strategies, reaction model, reaction conditions and mechanisms.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 2","pages":"Article 110469"},"PeriodicalIF":9.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to ‘Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots’ [Chinese Chemical Letters 34 (2023) 107672] 基于碱性磷酸酶诱导原位生成荧光非共轭聚合物点的荧光免疫测定"[中国化学快报 34 (2023) 107672]勘误表
IF 9.4 1区 化学
Chinese Chemical Letters Pub Date : 2024-09-17 DOI: 10.1016/j.cclet.2024.109881
Donghui Wu , Qilin Zhao , Jian Sun , Xiurong Yang
{"title":"Corrigendum to ‘Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots’ [Chinese Chemical Letters 34 (2023) 107672]","authors":"Donghui Wu ,&nbsp;Qilin Zhao ,&nbsp;Jian Sun ,&nbsp;Xiurong Yang","doi":"10.1016/j.cclet.2024.109881","DOIUrl":"10.1016/j.cclet.2024.109881","url":null,"abstract":"","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"35 12","pages":"Article 109881"},"PeriodicalIF":9.4,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1001841724004005/pdfft?md5=f3cecc8fadb9300fd3929e88c49fd498&pid=1-s2.0-S1001841724004005-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142241276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sp1-hybridized linear and cyclic carbon chain
IF 9.4 1区 化学
Chinese Chemical Letters Pub Date : 2024-09-16 DOI: 10.1016/j.cclet.2024.110466
Huiju Cao, Lei Shi
{"title":"Sp1-hybridized linear and cyclic carbon chain","authors":"Huiju Cao,&nbsp;Lei Shi","doi":"10.1016/j.cclet.2024.110466","DOIUrl":"10.1016/j.cclet.2024.110466","url":null,"abstract":"<div><div>Carbon materials have long been a subject of study, offering diverse properties based on their hybridized structures. Except sp<sup>2</sup>-hybridized graphene and carbon nanotubes, the focus on sp<sup>1</sup>-hybridized carbon chains has garnered significant interest due to its unique predicted properties, despite limitations in research and development stemming from its high reactivity. This comprehensive review summaries recent advancements in synthetic methodologies and characterization of the sp<sup>1</sup>-hybridized carbon chains, encompassing linear carbon chains and cyclo[<em>n</em>]carbons. The review traces significant milestones in synthesis and offers a thorough overview of various properties on linear and cyclic carbon chains, from their initial discovery to recent development. The advancing synthetic methods have led to practical breakthroughs, transitioning theoretical concepts into tangible carbon-chain materials. However, challenges persist in achieving controlled and scalable preparation due to the high reactivity associated with sp<sup>1</sup>-hybridization. Future research prospects focus on fundamental studies, such as exploring the transition length from polyyne to carbyne and experimentally determining the properties of single carbon chains. This review underscores both the progress made and the compelling avenues for future exploration in the dynamic field of sp<sup>1</sup>-hybridized carbon chains.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 4","pages":"Article 110466"},"PeriodicalIF":9.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143098170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement 抗菌超高分子量聚乙烯中茶多酚的膨胀和侵蚀辅助持续释放,用于关节置换术
IF 9.4 1区 化学
Chinese Chemical Letters Pub Date : 2024-09-15 DOI: 10.1016/j.cclet.2024.110468
Yue Ren , Kang Li , Yi-Zi Wang , Shao-Peng Zhao , Shu-Min Pan , Haojie Fu , Mengfan Jing , Yaming Wang , Fengyuan Yang , Chuntai Liu
{"title":"Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement","authors":"Yue Ren ,&nbsp;Kang Li ,&nbsp;Yi-Zi Wang ,&nbsp;Shao-Peng Zhao ,&nbsp;Shu-Min Pan ,&nbsp;Haojie Fu ,&nbsp;Mengfan Jing ,&nbsp;Yaming Wang ,&nbsp;Fengyuan Yang ,&nbsp;Chuntai Liu","doi":"10.1016/j.cclet.2024.110468","DOIUrl":"10.1016/j.cclet.2024.110468","url":null,"abstract":"<div><div>The considerable hazard posed by periprosthetic joint infections underlines the urgent need for the rapid advancement of <em>in-situ</em> drug delivery systems within joint materials. However, the pursuit of sustained antibacterial efficacy remains a formidable challenge. In this context, we proposed a novel strategy that leverages swelling and erosion mechanisms to facilitate drug release of drug-loaded ultrahigh molecular weight polyethylene (UHMWPE), thereby ensuring its long-lasting antibacterial performance. Polyethylene oxide (PEO), a hydrophilic polymer with fast hydrating ability and high swelling capacity, was incorporated in UHMWPE alongside the antibacterial tea polyphenol (epigallocatechin gallate, EGCG as representative). The swelling of PEO enhanced water infiltration into the matrix, while the erosion of PEO balanced the release of the encapsulated EGCG, resulting in a steady release. The behavior was supported by the EGCG release profiles and the corresponding fitted release kinetic models. As demonstrated by segmented antibacterial assessments, the antibacterial efficiency was enhanced 2 to 3 times in the PEO/EGCG/UHMWPE composite compared to that of EGCG/UHMWPE. Additionally, the PEO/EGCG/UHMWPE composite exhibited favorable biocompatibility and mechanical performance, making it a potential candidate for the development of drug-releasing joint implants to combat prosthetic bacterial infections.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 2","pages":"Article 110468"},"PeriodicalIF":9.4,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction 构建 MoO3-聚氧化金属酸盐混合超结构,促进电催化氢气进化反应
IF 9.4 1区 化学
Chinese Chemical Letters Pub Date : 2024-09-15 DOI: 10.1016/j.cclet.2024.110467
Bowen Li, Ting Wang, Ming Xu, Yuqi Wang, Zhaoxing Li, Mei Liu, Wenjing Zhang, Ming Feng
{"title":"Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction","authors":"Bowen Li,&nbsp;Ting Wang,&nbsp;Ming Xu,&nbsp;Yuqi Wang,&nbsp;Zhaoxing Li,&nbsp;Mei Liu,&nbsp;Wenjing Zhang,&nbsp;Ming Feng","doi":"10.1016/j.cclet.2024.110467","DOIUrl":"10.1016/j.cclet.2024.110467","url":null,"abstract":"<div><div>Improving the surface atoms utilization efficiency of catalysts is extremely important for large-scale H<sub>2</sub> production by electrochemical water splitting, but it remains a great challenge. Herein, we reported two kinds of MoO<sub>3</sub>-polyoxometalate hybrid nanobelt superstructures (MoO<sub>3</sub>-POM HNSs, POM = PW<sub>12</sub>O<sub>40</sub> and SiW<sub>12</sub>O<sub>40</sub>) using a simple hydrothermal method. Such superstructure with highly uniform nanoparticles as building blocks can expose more surface atoms and emanate increased specific surface area. The incorporated POMs generated abundant oxygen vacancies, improved the electronic mobility, and modulated the surface electronic structure of MoO<sub>3</sub>, allowing to optimize the H* adsorption/desorption and dehydrogenation kinetics of catalyst. Notably, the as-prepared MoO<sub>3</sub>-PW<sub>12</sub>O<sub>40</sub> HNSs electrodes not only displayed the low overpotentials of 108 mV at 10 mA/cm<sup>2</sup> current density in 0.5 mol/L H<sub>2</sub>SO<sub>4</sub> electrolyte but also displayed excellent long-term stability. The hydrogen evolution reaction (HER) performance of MoO<sub>3</sub>-POM superstructures is significantly better than that of corresponding bulk materials MoO<sub>3</sub>@PW<sub>12</sub>O<sub>40</sub> and MoO<sub>3</sub>@SiW<sub>12</sub>O<sub>40</sub>, and the overpotentials are about 8.3 and 4.9 times lower than that of single MoO<sub>3</sub>. This work opens an avenue for designing highly surface-exposed catalysts for electrocatalytic H<sub>2</sub> production and other electrochemical applications.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 2","pages":"Article 110467"},"PeriodicalIF":9.4,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple host-guest and metal coordination interactions induce supramolecular assembly and structural transition
IF 9.4 1区 化学
Chinese Chemical Letters Pub Date : 2024-09-15 DOI: 10.1016/j.cclet.2024.110465
Shengyong Liu , Hui Li , Wei Zhang , Yan Zhang , Yan Dong , Wei Tian
{"title":"Multiple host-guest and metal coordination interactions induce supramolecular assembly and structural transition","authors":"Shengyong Liu ,&nbsp;Hui Li ,&nbsp;Wei Zhang ,&nbsp;Yan Zhang ,&nbsp;Yan Dong ,&nbsp;Wei Tian","doi":"10.1016/j.cclet.2024.110465","DOIUrl":"10.1016/j.cclet.2024.110465","url":null,"abstract":"<div><div>Three monomers, namely A2, B2, and GH, were designed and synthesized. By utilizing double host-guest interactions, the monomers A2+B2+GH underwent self-assembly to form a supramolecular linear polymer (SLP) at high concentrations. Long fibers could be pulled from the concentrated SLP solution. Upon the addition of PdCl<sub>2</sub>(PhCN)<sub>2</sub> into the SLP solution, a structural transformation occurred from SLP to a supramolecular crosslinked polymer (SCP) through metal coordination interaction. This transformation induced fluorescence quenching, test paper strips for ion detection experiment confirmed that the SLP had good detection ability for Pd<sup>2+</sup>. Furthermore, the SCP underwent a transformation into a gel when the concentration exceeded 145 mmol/L. The SCP gel demonstrated sensitivity to different stimuli, such as K<sup>+</sup> ions and changes in temperature, accompanied by a reversible transition between sol and gel states. Additionally, rheological analyses indicated that the gel possessed favorable self-healing properties.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 6","pages":"Article 110465"},"PeriodicalIF":9.4,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143696853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals
IF 9.4 1区 化学
Chinese Chemical Letters Pub Date : 2024-09-14 DOI: 10.1016/j.cclet.2024.110462
Ali Dai , Zhiguo Zheng , Liusheng Duan , Jian Wu , Weiming Tan
{"title":"Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals","authors":"Ali Dai ,&nbsp;Zhiguo Zheng ,&nbsp;Liusheng Duan ,&nbsp;Jian Wu ,&nbsp;Weiming Tan","doi":"10.1016/j.cclet.2024.110462","DOIUrl":"10.1016/j.cclet.2024.110462","url":null,"abstract":"<div><div>Agrochemicals, especially plant growth regulators (PGRs), are extensively used to modulate endogenous phytohormone signals in small quantities, significantly influencing plant growth and development. Plant hormones typically exhibit diverse chemical structures, with common examples including indole rings, terpenoid frameworks, adenine motifs, cyclic lactones, cyclopentanones, and steroidal compounds, which are extensively employed in pesticides. This article explores the interactions and biological activities of small molecules on proteins, enzymes, and other reactive sites involved in the biosynthesis, metabolism, transport, and signal transduction pathways of various plant hormones. Additionally, it analyzes the structure-activity relationships (SARs) of pesticides incorporating these structural motifs to elucidate the relationship between active fragments, pharmacophores, and targets, highlighting the characteristics of potent small molecules and their derivatives. This comprehensive review aims to provide novel perspectives for the development and design of pesticides, offering valuable insights for researchers in the field.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 4","pages":"Article 110462"},"PeriodicalIF":9.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143149446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate 用亚胺和草酸四丁基铵光化学合成α-氨基酸的 EDA 复合物
IF 9.4 1区 化学
Chinese Chemical Letters Pub Date : 2024-09-14 DOI: 10.1016/j.cclet.2024.110446
Min-Hang Zhou, Jun Jiang, Wei-Min He
{"title":"EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate","authors":"Min-Hang Zhou,&nbsp;Jun Jiang,&nbsp;Wei-Min He","doi":"10.1016/j.cclet.2024.110446","DOIUrl":"10.1016/j.cclet.2024.110446","url":null,"abstract":"","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 1","pages":"Article 110446"},"PeriodicalIF":9.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications 用于 H2O2 光合作用的非金属氮化碳的最新进展:机理、改性和原位应用
IF 9.4 1区 化学
Chinese Chemical Letters Pub Date : 2024-09-14 DOI: 10.1016/j.cclet.2024.110457
Hao Lv , Zhi Li , Peng Yin , Ping Wan , Mingshan Zhu
{"title":"Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications","authors":"Hao Lv ,&nbsp;Zhi Li ,&nbsp;Peng Yin ,&nbsp;Ping Wan ,&nbsp;Mingshan Zhu","doi":"10.1016/j.cclet.2024.110457","DOIUrl":"10.1016/j.cclet.2024.110457","url":null,"abstract":"<div><div>Photocatalytic hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) production has been considered as a promising strategy for H<sub>2</sub>O<sub>2</sub> synthesis due to its environmentally friendly. Among various photocatalysts, carbon nitride-based materials are excellent candidates for H<sub>2</sub>O<sub>2</sub> production because of their excellent visible-light response, low cost and high stability. In this review, we summarize in detail the research progress on the photocatalytic production of H<sub>2</sub>O<sub>2</sub> by carbon nitride. First, we summarize the basic principles of photocatalysis and photocatalytic H<sub>2</sub>O<sub>2</sub> production. Second, the classification and modification methods of carbon-nitride-based materials are discussed, including morphology modulation, noble metal loading, defect control, heterojunction regulation, molecular structure engineering and elemental doping. Finally, the different <em>in-situ</em> applications of H<sub>2</sub>O<sub>2</sub> <em>via</em> photosynthesis were discussed, including disinfection and antibiotic resistant genes degradation, organic pollutants degradation, medical applications and fine chemical synthesis. This review brings great promise for <em>in-situ</em> H<sub>2</sub>O<sub>2</sub> photosynthesis, which is expected to serve as a key component in future applications.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 1","pages":"Article 110457"},"PeriodicalIF":9.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信