金属单原子催化剂源自硅基材料,用于高级氧化应用

IF 9.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hanghang Zhao , Wenbo Qi , Xin Tan , Xing Xu , Fengmin Song , Xianzhao Shao
{"title":"金属单原子催化剂源自硅基材料,用于高级氧化应用","authors":"Hanghang Zhao ,&nbsp;Wenbo Qi ,&nbsp;Xin Tan ,&nbsp;Xing Xu ,&nbsp;Fengmin Song ,&nbsp;Xianzhao Shao","doi":"10.1016/j.cclet.2025.110898","DOIUrl":null,"url":null,"abstract":"<div><div>Enhancing the corrosion resistance of carriers within Fenton-like systems and inhibiting the migration and aggregation of single atoms in reaction environments are essential for maintaining both high activity and stability at catalytic sites, thus meeting fundamental requirements for practical application. The Fenton-like process of activating various strong oxidants by silicon-based single atom catalysts (SACs) prepared based on silicon-based materials (mesoporous silica, silicon-based minerals, and organosilicon materials) has unique advantages such as structural stability (especially important under strong oxidation conditions) and environmental protection. In this paper, the preparation strategies for the silicon-based SACs were assessed first, and the structural characteristics of various silicon-based SACs are systematically discussed, their application process and mechanism in Fenton-like process to achieve water purification are investigated, and the progress of Fenton-like process in density functional theory (DFT) of silicon-based derived single atom catalysts is summarized. In this paper, the preparation strategies and applications of silicon-based derived SACs are analyzed in depth, and their oxidation activities and pathways to different pollutants in water are reviewed. In addition, this paper also summarizes the device design and application of silicon-based derived SACs, and prospects the future development of silicon-based SACs in Fenton-like applications.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 6","pages":"Article 110898"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal single-atom catalysts derived from silicon-based materials for advanced oxidation applications\",\"authors\":\"Hanghang Zhao ,&nbsp;Wenbo Qi ,&nbsp;Xin Tan ,&nbsp;Xing Xu ,&nbsp;Fengmin Song ,&nbsp;Xianzhao Shao\",\"doi\":\"10.1016/j.cclet.2025.110898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Enhancing the corrosion resistance of carriers within Fenton-like systems and inhibiting the migration and aggregation of single atoms in reaction environments are essential for maintaining both high activity and stability at catalytic sites, thus meeting fundamental requirements for practical application. The Fenton-like process of activating various strong oxidants by silicon-based single atom catalysts (SACs) prepared based on silicon-based materials (mesoporous silica, silicon-based minerals, and organosilicon materials) has unique advantages such as structural stability (especially important under strong oxidation conditions) and environmental protection. In this paper, the preparation strategies for the silicon-based SACs were assessed first, and the structural characteristics of various silicon-based SACs are systematically discussed, their application process and mechanism in Fenton-like process to achieve water purification are investigated, and the progress of Fenton-like process in density functional theory (DFT) of silicon-based derived single atom catalysts is summarized. In this paper, the preparation strategies and applications of silicon-based derived SACs are analyzed in depth, and their oxidation activities and pathways to different pollutants in water are reviewed. In addition, this paper also summarizes the device design and application of silicon-based derived SACs, and prospects the future development of silicon-based SACs in Fenton-like applications.</div></div>\",\"PeriodicalId\":10088,\"journal\":{\"name\":\"Chinese Chemical Letters\",\"volume\":\"36 6\",\"pages\":\"Article 110898\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Chemical Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001841725000853\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841725000853","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提高类芬顿体系中载流子的耐腐蚀性,抑制单原子在反应环境中的迁移和聚集,是保持催化位点高活性和稳定性的必要条件,从而满足实际应用的基本要求。基于硅基材料(介孔二氧化硅、硅基矿物、有机硅材料)制备的硅基单原子催化剂(SACs)活化各种强氧化剂的类芬顿工艺具有结构稳定(在强氧化条件下尤为重要)、环保等独特优点。本文首先评价了硅基SACs的制备策略,系统地讨论了各种硅基SACs的结构特点,研究了其在类芬顿工艺中实现水净化的应用过程和机理,总结了类芬顿工艺在硅基衍生单原子催化剂密度泛函理论(DFT)中的研究进展。本文深入分析了硅基SACs的制备策略和应用,综述了其对水中不同污染物的氧化活性和途径。此外,本文还总结了硅基衍生sac的器件设计和应用,并展望了硅基sac在类芬顿应用中的未来发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Metal single-atom catalysts derived from silicon-based materials for advanced oxidation applications

Metal single-atom catalysts derived from silicon-based materials for advanced oxidation applications
Enhancing the corrosion resistance of carriers within Fenton-like systems and inhibiting the migration and aggregation of single atoms in reaction environments are essential for maintaining both high activity and stability at catalytic sites, thus meeting fundamental requirements for practical application. The Fenton-like process of activating various strong oxidants by silicon-based single atom catalysts (SACs) prepared based on silicon-based materials (mesoporous silica, silicon-based minerals, and organosilicon materials) has unique advantages such as structural stability (especially important under strong oxidation conditions) and environmental protection. In this paper, the preparation strategies for the silicon-based SACs were assessed first, and the structural characteristics of various silicon-based SACs are systematically discussed, their application process and mechanism in Fenton-like process to achieve water purification are investigated, and the progress of Fenton-like process in density functional theory (DFT) of silicon-based derived single atom catalysts is summarized. In this paper, the preparation strategies and applications of silicon-based derived SACs are analyzed in depth, and their oxidation activities and pathways to different pollutants in water are reviewed. In addition, this paper also summarizes the device design and application of silicon-based derived SACs, and prospects the future development of silicon-based SACs in Fenton-like applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Chemical Letters
Chinese Chemical Letters 化学-化学综合
CiteScore
14.10
自引率
15.40%
发文量
8969
审稿时长
1.6 months
期刊介绍: Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信