{"title":"Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis","authors":"Yuan Teng , Zichun Zhou , Jinghua Chen , Siying Huang , Hongyan Chen , Daibin Kuang","doi":"10.1016/j.cclet.2024.110430","DOIUrl":"10.1016/j.cclet.2024.110430","url":null,"abstract":"<div><div>Optimizing the interfacial quality of halide perovskites heterojunction to promote the photogenerated charge separation is of great significance in photocatalytic reactions. However, the delicately regulation of interfacial structure and properties of halide perovskites hybrid is still a big challenge owing to the growth uncontrollability and incompatibility between different constituents. Here we use BiOBr nanosheets as the start-template to <em>in situ</em> epitaxially grow Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> nanosheets by “cosharing” Bi and Br atoms strategy for designing a 2D/2D Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub>/BiOBr heterojunction. Systematic studies show that the epitaxial heterojunction can optimize the synergistic effect of BiOBr and Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> <em>via</em> the formation of tight-contact interfaces, strong interfacial electronic coupling and charge redistribution, which can not only drive the Z-scheme charge transfer mechanism to greatly promote the spatial separation of electron-hole pairs, but also modulate the interfacial electronic structure to facilitate the adsorption and activation of toluene molecules. The heterojunction exhibited 62.3 and 2.4-fold photoactivity improvement for toluene oxidation to benzaldehyde than parental BiOBr and Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub>, respectively. This study not only proposed a novel dual atom-bridge protocol to engineer high-quality perovskite heterojunctions, but also uncovered the potential of heterojunction in promoting electron-hole separation as well as the application in photocatalytic organic synthesis.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 2","pages":"Article 110430"},"PeriodicalIF":9.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junjie Duan , Dan Chen , Long Chen , Shuying Li , Ting Chen , Dong Wang
{"title":"2D hexagonal tessellations sustained by Br···Br/H contacts: From regular to semiregular to k-uniform tilings","authors":"Junjie Duan , Dan Chen , Long Chen , Shuying Li , Ting Chen , Dong Wang","doi":"10.1016/j.cclet.2024.110445","DOIUrl":"10.1016/j.cclet.2024.110445","url":null,"abstract":"<div><div>Achieving seamless tiling through the self-assembly of organic species has long fascinated scientists for its potential applications across various fields. However, constructing periodic nanostructures with high-order tessellation remains challenging, particularly in achieving precise control at the supramolecular level. In this study, we present the successful creation of multiple seamless 2D tessellations on Au (111) surface using versatile hexagonal tiles derived from a singular molecular unit, namely 2,6,10-tribromotricycloquinazoline. Through scanning tunneling microscopy imaging, seven distinct 2D tessellations, ranging from regular to semiregular to <em>k</em>-uniform tilings, are unveiled at the molecular level. Density functional theory calculations provide a theoretical basis for the formation of these complex 2D tessellation, highlighting the important role of the variability of Br···Br/H contacts in facilitating complex seamless 2D tessellations on surface. This work opens avenues for exploring possibilities in constructing intricate tiling patterns with diverse applications.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 3","pages":"Article 110445"},"PeriodicalIF":9.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143318378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tianyi Yang , Fangxi Su , Dehuan Shi , Shenghong Zhong , Yalin Guo , Zhaohui Liu , Jianfeng Huang
{"title":"Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix","authors":"Tianyi Yang , Fangxi Su , Dehuan Shi , Shenghong Zhong , Yalin Guo , Zhaohui Liu , Jianfeng Huang","doi":"10.1016/j.cclet.2024.110444","DOIUrl":"10.1016/j.cclet.2024.110444","url":null,"abstract":"<div><div>Propane dehydrogenation (PDH) is a vital industrial process for producing propene, utilizing primarily Cr-based or Pt-based catalysts. These catalysts often suffer from challenges such as the toxicity of Cr, the high costs of noble metals like Pt, and deactivation issues due to sintering or coke formation at elevated temperatures. We introduce an exceptional Ru-based catalyst, Ru nanoparticles anchored on a nitrogen-doped carbon matrix (Ru@NC), which achieves a propane conversion rate of 32.2 % and a propene selectivity of 93.1 % at 550 °C, with minimal coke deposition and a low deactivation rate of 0.0065 h<sup>−1</sup>. Characterizations using techniques like TEM and XPS, along with carefully-designed controlled experiments, reveal that the notable performance of Ru@NC stems from the modified electronic state of Ru by nitrogen dopant and the microporous nature of the matrix, positioning it as a top contender among state-of-the-art PDH catalysts.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 2","pages":"Article 110444"},"PeriodicalIF":9.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xi Tang , Chunlei Zhu , Yulu Yang , Shihan Qi , Mengqiu Cai , Abdullah N. Alodhayb , Jianmin Ma
{"title":"Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries","authors":"Xi Tang , Chunlei Zhu , Yulu Yang , Shihan Qi , Mengqiu Cai , Abdullah N. Alodhayb , Jianmin Ma","doi":"10.1016/j.cclet.2024.110014","DOIUrl":"10.1016/j.cclet.2024.110014","url":null,"abstract":"<div><p>The battery energy density can be improved by raising the operating voltage, however, which may lead to rapid capacity decay due to the continuous electrolyte decomposition and the thickening of electrode electrolyte interphases. To address these challenges, we proposed tripropyl phosphate (TPP) as an additive−regulating Li<sup>+</sup> solvation structure to construct a stable LiF–rich electrode carbonate−based electrolyte interphases for sustaining 4.6 V Li||LiCoO<sub>2</sub> batteries. This optimized interphases could help reduce the resistance and achieve better rate performance and cycling stability. As expected, the Li||LiCoO<sub>2</sub> battery retained 79.4 % capacity after 100 cycles at 0.5 C, while the Li||Li symmetric cell also kept a stable plating/stripping process over 450 h at the current density of 1.0 mA/cm<sup>2</sup> with a deposited amount of 0.5 mAh/cm<sup>2</sup>.</p></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"35 12","pages":"Article 110014"},"PeriodicalIF":9.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang
{"title":"Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts","authors":"Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang","doi":"10.1016/j.cclet.2024.110439","DOIUrl":"10.1016/j.cclet.2024.110439","url":null,"abstract":"<div><div>Solar-induced water oxidation reaction (WOR) for oxygen evolution is a critical step in the transformation of Earth's atmosphere from a reducing to an oxidation one during its primordial stages. WOR is also associated with important reduction reactions, such as oxygen reduction reaction (ORR), which leads to the production of hydrogen peroxide (H2O2). These transitions are instrumental in the emergence and evolution of life. In this study, transition metals were loaded onto nitrogen-doped carbon (NDC) prepared under the primitive Earth's atmospheric conditions. These metal-loaded NDC samples were found to catalyze both WOR and ORR under light illumination. The chemical pathways initiated by the pristine and metal-loaded NDC were investigated. This study provides valuable insights into potential mechanisms relevant to the early evolution of our planet.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 2","pages":"Article 110439"},"PeriodicalIF":9.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanjun Cai , Yong Jiang , Yu Chen , Erzhuo Cheng , Yuan Gu , Yuwei Li , Qianqian Liu , Jian Zhang , Jifang Liu , Shisong Han , Bin Yang
{"title":"Amplifying STING activation and immunogenic cell death by metal-polyphenol coordinated nanomedicines for enhanced cancer immunotherapy","authors":"Yanjun Cai , Yong Jiang , Yu Chen , Erzhuo Cheng , Yuan Gu , Yuwei Li , Qianqian Liu , Jian Zhang , Jifang Liu , Shisong Han , Bin Yang","doi":"10.1016/j.cclet.2024.110437","DOIUrl":"10.1016/j.cclet.2024.110437","url":null,"abstract":"<div><div>Ferroptosis in combination with immune therapy emerges as a promising approach for cancer therapy. Herein, dual-responsive metal-polyphenol coordinated nanomedicines were developed for pH/glutathione (GSH)-responsive synergistic ferroptosis and immunotherapy. Our innovative strategy involves the development of a manganese-polyphenol coordinated nanostructure, leveraging the biocompatibility of bovine serum albumin (BSA) as a template to encapsulate the anticancer drug sorafenib. The tumor microenvironment (pH/GSH) prompts the disassembly of MnO<sub>2</sub> and epigallocatechin gallate (EGCG), thereby releases the anticancer payload. Concurrently, MnO<sub>2</sub> acts to deplete intracellular GSH, which in turn suppresses glutathione peroxidase activity, leading to an accumulation of lipid peroxides with cell ferroptosis. Additionally, the release of Mn<sup>2+</sup> ions bolster the cyclic guanosine monophosphlic acid (GMP)-adenosine monophosphlic acid (AMP) synthase-stimulator of interferon gene (cGAS-STING) pathway, which, in conjunction with the immunogenic cell death (ICD) effect induced by tumor cell apoptosis, significantly promotes dendritic cell (DC) maturation and enhances the presentation of tumor antigens. This successively ignites a robust innate and adaptive immune response. Both <em>in vitro</em> and <em>in vivo</em> experiments have demonstrated that the concurrent administration of ferroptosis-inducing and immune-stimulating therapies can significantly inhibit tumor growth.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 5","pages":"Article 110437"},"PeriodicalIF":9.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143511881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of titanium-based advanced oxidation processes in pesticide-contaminated water purification: Emerging opportunities and challenges","authors":"Chu Wu , Zhichao Dong , Jinfang Hou , Jian Peng , Shuangyu Wu , Xiaofang Wang , Xiangwei Kong , Yue Jiang","doi":"10.1016/j.cclet.2024.110438","DOIUrl":"10.1016/j.cclet.2024.110438","url":null,"abstract":"<div><div>Efficient and innovative nano-catalytic oxidation technologies offer a breakthrough in removing emerging contaminants (ECs) from water, surpassing the limitations of traditional methods. Environmental functional materials (EFMs), particularly high-end oxidation systems using eco-friendly nanomaterials, show promise for absorbing and degrading ECs. This literature review presents a comprehensive analysis of diverse traditional restoration techniques-biological, physical, and chemical-assessing their respective applications and limitations in pesticide-contaminated water purification. Through meticulous comparison, we unequivocally advocate for the imperative integration of environmentally benign nanomaterials, notably titanium-based variants, in forthcoming methodologies. Our in-depth exploration scrutinizes the catalytic efficacy, underlying mechanisms, and adaptability of pioneering titanium-based nanomaterials across a spectrum of environmental contexts. Additionally, strategic recommendations are furnished to surmount challenges and propel the frontiers of implementing eco-friendly nanomaterials in practical water treatment scenarios.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 3","pages":"Article 110438"},"PeriodicalIF":9.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143318381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinshu Huang , Zhuochun Huang , Tengyu Liu , Yu Wen , Jili Yuan , Song Yang , Hu Li
{"title":"Modulating single-atom Co and oxygen vacancy coupled motif for selective photodegradation of glyphosate wastewater to circumvent toxicant residue","authors":"Jinshu Huang , Zhuochun Huang , Tengyu Liu , Yu Wen , Jili Yuan , Song Yang , Hu Li","doi":"10.1016/j.cclet.2024.110179","DOIUrl":"10.1016/j.cclet.2024.110179","url":null,"abstract":"<div><div>The typical wastewater treatment is focused on the photocatalytic efficiency in the degradation of organic pollutants, with little attention to the involved selectivity which may correlate with toxicant residues. Herein, an electron localization strategy for specific O<sub>2</sub> adsorption/activation enabled by photothermal/pyroelectric effect and <em>in situ</em> constructed active centers of single-atom Co and oxygen vacancy (Co-O<sub>V</sub>) on the Co/BiOCl-O<sub>V</sub> photocatalyst was developed for photocatalytic degradation of glyphosate (GLP) wastewater of high performance/selectivity. Under full-spectrum-light irradiation, a high GLP degradation rate of 99.8% with over 90% C‒P bond-breaking selectivity was achieved within 2 h, while effectively circumventing toxicant residues such as aminomethylphosphonic acid (AMPA). X-ray absorption spectroscopy and relevant characterizations expounded the tailored anchoring of Co single atoms onto the BiOCl-O<sub>V</sub> carrier and photothermal/pyroelectric effect. The oriented formation of more <sup>•</sup>O<sub>2</sub><sup>−</sup> on Co/BiOCl-O<sub>V</sub> could be achieved with the Co-O<sub>V</sub> coupled center that had excellent O<sub>2</sub> adsorption/activation capacity, as demonstrated by quantum calculations. The formed unique Co-O<sub>V</sub> active sites could largely decrease the C‒P bond-breaking energy barrier, thus greatly improving the selectivity toward the initial C‒P bond scission and the activity in subsequent conversion steps in the directional photocatalytic degradation of GLP. The electron localization strategy by <em>in situ</em> constructing the coupled active centers provides an efficient scheme and new insights for the low-toxic photodegradation of organic pollutants containing C‒X bonds.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 5","pages":"Article 110179"},"PeriodicalIF":9.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143550290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Li , Xue Ke , Shan Wang , Zhuo Jiang , Yuzheng Guo , Chunguang Kuai
{"title":"Antioxidative strategies of 2D MXenes in aqueous energy storage system","authors":"Li Li , Xue Ke , Shan Wang , Zhuo Jiang , Yuzheng Guo , Chunguang Kuai","doi":"10.1016/j.cclet.2024.110423","DOIUrl":"10.1016/j.cclet.2024.110423","url":null,"abstract":"<div><div>As a novel two-dimensional (2D) material, MXenes are anticipated to have a significant impact on future aqueous energy storage and conversion technologies owing to their unique intrinsic laminar structure and exceptional physicochemical properties. Nevertheless, the fabrication and utilization of functional MXene-based devices face formidable challenges due to their susceptibility to oxidative degradation in aqueous solutions. This review begins with an outline of various preparation techniques for MXenes and their implications for structure and surface chemistry. Subsequently, the controversial oxidation mechanisms are discussed, followed by a summary of currently employed oxidation characterization techniques. Additionally, the factors influencing MXene oxidation are then introduced, encompassing chemical composition (types of M, X elements, layer numbers, terminations, and defects) as well as environment (atmosphere, temperature, light, potential, solution pH, free water and O<sub>2</sub> content). The review then shifts its focus to strategies aiming to prevent or delay MXene oxidation, thereby expanding the applicability of MXenes in complex environments. Finally, the challenges and prospects within this rapidly-growing research field are presented to promote further advancements of MXenes in aqueous storage systems.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 5","pages":"Article 110423"},"PeriodicalIF":9.4,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143619195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fe3+ ion quantification with reusable bioinspired nanopores","authors":"Yanqiong Wang , Yaqi Hou , Fengwei Huo , Xu Hou","doi":"10.1016/j.cclet.2024.110428","DOIUrl":"10.1016/j.cclet.2024.110428","url":null,"abstract":"<div><div>Excessive Fe<sup>3+</sup> ion concentrations in wastewater pose a long-standing threat to human health. Achieving low-cost, high-efficiency quantification of Fe<sup>3+</sup> ion concentration in unknown solutions can guide environmental management decisions and optimize water treatment processes. In this study, by leveraging the rapid, real-time detection capabilities of nanopores and the specific chemical binding affinity of tannic acid to Fe<sup>3+</sup>, a linear relationship between the ion current and Fe<sup>3+</sup> ion concentration was established. Utilizing this linear relationship, quantification of Fe<sup>3+</sup> ion concentration in unknown solutions was achieved. Furthermore, ethylenediaminetetraacetic acid disodium salt was employed to displace Fe<sup>3+</sup> from the nanopores, allowing them to be restored to their initial conditions and reused for Fe<sup>3+</sup> ion quantification. The reusable bioinspired nanopores remain functional over 330 days of storage. This recycling capability and the long-term stability of the nanopores contribute to a significant reduction in costs. This study provides a strategy for the quantification of unknown Fe<sup>3+</sup> concentration using nanopores, with potential applications in environmental assessment, health monitoring, and so forth.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 2","pages":"Article 110428"},"PeriodicalIF":9.4,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}