Zhongchao Zhou , Jian Song , Yinghao Xie , Yuqian Ma , Hong Hu , Hui Li , Lei Zhang , Charles H. Lawrie
{"title":"DFT calculation for organic semiconductor-based gas sensors: Sensing mechanism, dynamic response and sensing materials","authors":"Zhongchao Zhou , Jian Song , Yinghao Xie , Yuqian Ma , Hong Hu , Hui Li , Lei Zhang , Charles H. Lawrie","doi":"10.1016/j.cclet.2025.110906","DOIUrl":null,"url":null,"abstract":"<div><div>Organic semiconductor materials have demonstrated extensive potential in the field of gas sensors due to the advantages including designable chemical structure, tunable physical and chemical properties. Through density functional theory (DFT) calculations, researchers can investigate gas sensing mechanisms, optimize, and predict the electronic structures and response characteristics of these materials, and thereby identify candidate materials with promising gas sensing applications for targeted design. This review concentrates on three primary applications of DFT technology in the realm of organic semiconductor-based gas sensors: (1) Investigating the sensing mechanisms by analyzing the interactions between gas molecules and sensing materials through DFT, (2) simulating the dynamic responses of gas molecules, which involves the behavior on the sensing interface using DFT combined with other computational methods to explore adsorption and diffusion processes, and (3) exploring and designing sensitive materials by employing DFT for screening and predicting chemical structures, thereby developing new sensing materials with exceptional performance. Furthermore, this review examines current research outcomes and anticipates the extensive application prospects of DFT technology in the domain of organic semiconductor-based gas sensors. These efforts are expected to provide valuable insights for further in-depth exploration of DFT applications in sensor technology, thereby fostering significant advancements and innovations in the field.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 6","pages":"Article 110906"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841725000932","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Organic semiconductor materials have demonstrated extensive potential in the field of gas sensors due to the advantages including designable chemical structure, tunable physical and chemical properties. Through density functional theory (DFT) calculations, researchers can investigate gas sensing mechanisms, optimize, and predict the electronic structures and response characteristics of these materials, and thereby identify candidate materials with promising gas sensing applications for targeted design. This review concentrates on three primary applications of DFT technology in the realm of organic semiconductor-based gas sensors: (1) Investigating the sensing mechanisms by analyzing the interactions between gas molecules and sensing materials through DFT, (2) simulating the dynamic responses of gas molecules, which involves the behavior on the sensing interface using DFT combined with other computational methods to explore adsorption and diffusion processes, and (3) exploring and designing sensitive materials by employing DFT for screening and predicting chemical structures, thereby developing new sensing materials with exceptional performance. Furthermore, this review examines current research outcomes and anticipates the extensive application prospects of DFT technology in the domain of organic semiconductor-based gas sensors. These efforts are expected to provide valuable insights for further in-depth exploration of DFT applications in sensor technology, thereby fostering significant advancements and innovations in the field.
期刊介绍:
Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.