{"title":"A nonradiographic strategy to real-time monitor the position of three-dimensional-printed medical orthopedic implants by embedding superparamagnetic Fe3O4 particles","authors":"Yike Li, Peng Chen, Zhenhua Wu, Congcan Shi, Peng Chen, Yizhuo Xu, Xiaojun Chen, Manhui Chen, Yuxin Li, Chunze Yan, Yunsong Shi, Bin Su","doi":"10.1002/idm2.12133","DOIUrl":"10.1002/idm2.12133","url":null,"abstract":"<p>Monitoring the position of orthopedic implants in vivo is paramount for enhancing postoperative rehabilitation. Traditional radiographic methods, although effective, pose inconveniences to patients in terms of specialized equipment requirements and delays in rehabilitation adjustment. Here, a nonradiographic design concept for real-time and precisely monitoring the position of in vivo orthopedic implants is presented. The monitoring system encompasses an external magnetic field, a three-dimensional (3D)-printed superparamagnetic intervertebral body fusion cage (SIBFC), and a magnetometer. The SIBFC with a polyetheretherketone framework and a superparamagnetic Fe<sub>3</sub>O<sub>4</sub> component was integrally fabricated by the high-temperature selective laser sintering technology. Owing to the superparamagnetic component, the minor migration of SIBFC within the spine would cause the distribution change of the magnetic induction intensities, which can be monitored in real-time by the magnetometer no matter in the static states or dynamic bending motions. Besides horizontal migration, occurrences of intervertebral subsidence in the vertical plane of the vertebrae can also be effectively distinguished based on the obtained characteristic variations of magnetic induction intensities. This strategy exemplifies the potential of superparamagnetic Fe<sub>3</sub>O<sub>4</sub> particles in equipping 3D-printed orthopedic implants with wireless monitoring capabilities, holding promise for aiding patients' rehabilitation.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 1","pages":"133-149"},"PeriodicalIF":0.0,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12133","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139531465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lattice dynamics and thermoelectric properties of diamondoid materials","authors":"Hongyao Xie, Li-Dong Zhao, Mercouri G. Kanatzidis","doi":"10.1002/idm2.12134","DOIUrl":"10.1002/idm2.12134","url":null,"abstract":"<p>The diamondoid compounds are a large family of important semiconductors, which possess various unique transport properties and had been widely investigated in the fields of photoelectricity and nonlinear optics. For a significantly long period of time, diamondoid materials were not given much attention in the field of thermoelectricity. However, this changed when a series of diamondoid compounds showed a thermoelectric figure of merit (<i>ZT</i>) greater than 1.0. This discovery sparked considerable interest in further exploring the thermoelectric properties of diamondoid materials. This review aims to provide a comprehensive view of our current understanding of thermal and electronic transport in diamondoid materials and stimulate their development in thermoelectric applications. We present a collection of recent discoveries concerning the lattice dynamics and electronic structure of diamondoid materials. We review the underlying physics responsible for their unique electrical and phonon transport behaviors. Moreover, we provide insights into the advancements made in the field of thermoelectricity for diamondoid materials and the corresponding strategies employed to optimize their performance. Lastly, we emphasize the challenges that lie ahead and outline potential avenues for future research in the domain of diamondoid thermoelectric materials.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 1","pages":"5-28"},"PeriodicalIF":0.0,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12134","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139440380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoxuan Wang, Jingying Dai, Cong Shao, Takashi Goto, Honglian Dai
{"title":"Emerging advances in fluorescence imaging and phototherapy of arthritis","authors":"Xiaoxuan Wang, Jingying Dai, Cong Shao, Takashi Goto, Honglian Dai","doi":"10.1002/idm2.12130","DOIUrl":"https://doi.org/10.1002/idm2.12130","url":null,"abstract":"Arthritis is a chronic disease whose etiology is difficult to pinpoint, and the difficulty of arthritis detection and subsequent treatment causes enormous distress to patients. In recent years, thanks to advances in medicine and detection, a variety of treatment modalities for arthritis have emerged. The combination of emerging detection technologies with different anti‐inflammatory medications and even advances in surgical techniques have all played a positive role in the treatment of arthritis. In the present work, we have collected relevant literature on fluorescence (FL) imaging and phototherapy of arthritis in recent years, intending to reveal the advantages and potential application value of FL imaging and phototherapy for researchers. Meanwhile, due to the shortcomings of FL imaging and phototherapy in the diagnosis and treatment of arthritis, we advocate overcoming these difficulties in future research.","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"8 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138968019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Zhou, Donghui Li, Liang Wang, Xinying Zhang, Nan Deng, Chuanhang Guo, Chen Chen, Zirui Gan, Chenhao Liu, Wei Sun, Danjie Liu, Wei Li, Zhe Li, Kai Wang, Tao Wang
{"title":"Bicontinuous donor and acceptor fibril networks enable 19.2% efficiency pseudo‐bulk heterojunction organic solar cells","authors":"Jing Zhou, Donghui Li, Liang Wang, Xinying Zhang, Nan Deng, Chuanhang Guo, Chen Chen, Zirui Gan, Chenhao Liu, Wei Sun, Danjie Liu, Wei Li, Zhe Li, Kai Wang, Tao Wang","doi":"10.1002/idm2.12129","DOIUrl":"https://doi.org/10.1002/idm2.12129","url":null,"abstract":"Realizing bicontinuous fibrillar charge transport networks in the photoactive layer has been considered a promising method to achieve high‐efficiency organic solar cells (OSCs); however, this has been rarely achieved due to the interference of molecular organization of donor and acceptor components during solution casting. In this contribution, the fibrillization of polymer donor PM6 and small molecular nonfullerene acceptor L8‐BO is realized with the assistance of conjugated polymer D18‐Cl. Atomic force microscopy and photo‐induced force microscopy reveal that PM6 and D18‐Cl co‐assemble into long and slender fibrils within wide blending ratios due to their high compatibility; in contrast, the fibrillization of L8‐BO can be encouraged with the incorporation of 1% D18‐Cl. By utilizing a pseudo‐bulk heterojunction (p‐BHJ) active layer fabricated by layer‐by‐layer deposition, the optimized PM6+20% D18‐Cl/L8‐BO+1% D18‐Cl OSCs obtain bicontinuous fibril networks, leading to enhanced exciton dissociation and charge transport processes and superior power conversion efficiency of 19.2% (certified 18.91%) compared to 18.8% of the PM6:D18‐Cl:L8‐BO ternary BHJ OSCs.","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"56 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138604886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Outside Front Cover: Volume 2 Issue 5","authors":"","doi":"10.1002/idm2.12125","DOIUrl":"https://doi.org/10.1002/idm2.12125","url":null,"abstract":"<p><b>Outside Front Cover</b>: This work in doi:10.1002/idm2.12118 offers a holistic view of pathways for high-energy Li-S batteries under realistic conditions. Critical requirements for achieving high cell-level energy density for a Li-S cell are elaborated, including thick cathode, thin anode, and lean electrolyte, to pave the way for their practical applications in electric vehicles and smart grids.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"2 5","pages":"i"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71988864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Three-dimensional multicellular biomaterial platforms for biomedical application","authors":"Jianxin Hao, Chen Qin, Chengtie Wu","doi":"10.1002/idm2.12122","DOIUrl":"https://doi.org/10.1002/idm2.12122","url":null,"abstract":"<p>The three-dimensional (3D) multicellular platforms prepared by cells or biomaterials have been widely applied in biomedical fields for the regeneration of complex tissues, the exploration of cell crosstalk, and the establishment of tissue physiological and pathological models. Compared with the traditional 2D culture methods, the 3D multicellular platforms are easier to adjust the components and structures of extracellular matrix (ECM) because of the synthesis of ECM by cells and the use of biomaterials. Moreover, the 3D multicellular platforms also can customize the cell distribution and precisely design micro and macro structures of the systems. Based on these typical advantages of 3D multicellular platforms and their increasingly important position in the biomedical field, this review summarizes the present 3D multicellular platforms. Herein, current 3D multicellular platforms are divided into two major types: scaffold-free and scaffold-based 3D multicellular platforms. The specific characteristics and applications of different types of 3D multicellular platforms are thoroughly introduced to help readers understand how different models affect and regulate cell behaviors and inspire researchers on how to select and design suitable 3D multicellular platforms according to different application scenarios.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"2 5","pages":"714-734"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71924617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inside Front Cover: Volume 2 Issue 5","authors":"","doi":"10.1002/idm2.12126","DOIUrl":"https://doi.org/10.1002/idm2.12126","url":null,"abstract":"<p><b>Inside Front Cover</b>: In the review of doi:10.1002/idm2.12117, Chirality is a fundamental property observed in both living organisms and nature, which has demonstrated a preference for a specific type of chirality, leading to the selection of <i>L</i>-amino acids as the primary constituents of proteins, and <i>D</i>-sugars as the primary components of DNA and RNA. Hence, a more comprehensive investigation of the self-assembly of chirality at both the molecular and supramolecular scales could provide enhanced insights into biological systems, thereby facilitating breakthroughs in the development of novel materials.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"2 5","pages":"ii"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71924620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gaoyang Kong, Jianing Xu, Wei Xie, Ya Sun, Yile Fan, Haoyu Wang, Hiroki Kondo, Han Zhou
{"title":"Dual-mode smart flipping materials and devices for thermal management","authors":"Gaoyang Kong, Jianing Xu, Wei Xie, Ya Sun, Yile Fan, Haoyu Wang, Hiroki Kondo, Han Zhou","doi":"10.1002/idm2.12123","DOIUrl":"https://doi.org/10.1002/idm2.12123","url":null,"abstract":"<p>Thermal management is of great significance for human activities. Attaining thermal comfort not only requires thermal control of building's macroenvironment, but also additionally personal thermal regulation. Radiative cooling technologies are anticipated to effectively lower building energy utilization and provide optimal thermal comfort for individuals in hot weather. Nevertheless, these static and single-purpose characteristics lack the ability to adjust to rapidly changing weather conditions, often leading to excessive cooling. To overcome this challenge, the emergence of dual-mode smart flipping technologies has provided a pathway for dynamically adjusting the heating or cooling of objects in response to fluctuations in ambient temperature. First, the underlying principles of dual-mode smart flipping are shown. Then the evolving materials and approaches of smart flipping are given an introduction to adapt to different environments under external stimuli, such as mechanical flipping, temperature, humidity, and so forth. Afterward, we present the recent applications of dual-mode smart flipping materials and devices in personal thermal management, thermoelectric generation, energy-saving buildings, and smart windows. Finally, the challenges and outlook of dual-mode smart flipping are presented and future directions are identified.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"2 5","pages":"735-760"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71924616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Outside Back Cover: Volume 2 Issue 5","authors":"","doi":"10.1002/idm2.12128","DOIUrl":"https://doi.org/10.1002/idm2.12128","url":null,"abstract":"<p><b>Outside Back Cover</b>: AgIn<sub>5</sub>S<sub>8</sub> is a promising semiconductor photocatalyst for efficient visible-light photocatalytic hydrogen evolution (PHE). In this review by X. Zheng et al. doi:10.1002/idm2.12120, the recent progress of AgIn<sub>5</sub>S<sub>8</sub>-based photocatalysts for PHE application are comprehensively discussed, the representative optimization strategies for PHE performance enhancement are summarized, including morphology control, cocatalyst loading, and heterojunction construction, and the current challenges and future perspectives are highlighted. The fundamental studies on AgIn<sub>5</sub>S<sub>8</sub> photocatalyst are expected to stimulate research interest in solar-to-hydrogen and promote the development of advanced semiconductor photocatalyst.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"2 5","pages":"iv"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71924618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inside Back Cover: Volume 2 Issue 5","authors":"","doi":"10.1002/idm2.12127","DOIUrl":"https://doi.org/10.1002/idm2.12127","url":null,"abstract":"<p><b>Inside Back Cover</b>: This manuscript (DOI:10.1002/idm2.12119) describes the in-situ formation of hydrogel networks, which occurs under the regulation of inorganic particle hydration, resulting in hybrid composites for bone defect repair. The hierarchically porous structure enables cell and nutrient transfer, facilitating bone regeneration.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"2 5","pages":"iii"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71924621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}