{"title":"简便合成铂团簇装饰的 TiO2 纳米粒子,用于高效光催化降解抗生素","authors":"Yin Pan, Weizhen Liang, Zongpeng Wang, Junjie Gong, Yichao Wang, Aijiao Xu, Zhenyuan Teng, Shijie Shen, Lin Gu, Wenwu Zhong, Hongsheng Lu, Baofu Chen","doi":"10.1002/idm2.12203","DOIUrl":null,"url":null,"abstract":"<p>TiO<sub>2</sub> has attracted much attention in the field of photocatalytic degradation of antibiotics due to its good photostability, nontoxicity, and low cost. However, the rapid recombination of photogenerated carriers limits the further improvement of its photocatalytic activity. Here, a facile microwave-assisted hydrothermal method has been developed to prepare Pt clusters decorated TiO<sub>2</sub> nanoparticles. Pt clusters ranging in size from 1 to 2 nm are uniformly distributed across the surface of the TiO<sub>2</sub> matrix. A pronounced charge transfer phenomenon is discernible between the Pt and TiO<sub>2</sub> components. It is revealed that the charge transfer enables faster transfer and separation of photogenerated electrons and holes, which are beneficial for the improvement of photocatalytic degradation of both ofloxacin and levofloxacin. The degradation capability can be attributed to the efficient generation of •OH or •O<sub>2</sub><sup>−</sup> species within the solution. The parallel adsorption model of TiO<sub>2</sub> on antibiotic molecules is verified, and the degradation reaction pathway has been elucidated. This work provides a facile method for optimizing the performance of TiO<sub>2</sub> photocatalysts, which can be extended to other oxide photocatalysts.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 6","pages":"935-945"},"PeriodicalIF":24.5000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12203","citationCount":"0","resultStr":"{\"title\":\"Facile synthesis of Pt clusters decorated TiO2 nanoparticles for efficient photocatalytic degradation of antibiotics\",\"authors\":\"Yin Pan, Weizhen Liang, Zongpeng Wang, Junjie Gong, Yichao Wang, Aijiao Xu, Zhenyuan Teng, Shijie Shen, Lin Gu, Wenwu Zhong, Hongsheng Lu, Baofu Chen\",\"doi\":\"10.1002/idm2.12203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>TiO<sub>2</sub> has attracted much attention in the field of photocatalytic degradation of antibiotics due to its good photostability, nontoxicity, and low cost. However, the rapid recombination of photogenerated carriers limits the further improvement of its photocatalytic activity. Here, a facile microwave-assisted hydrothermal method has been developed to prepare Pt clusters decorated TiO<sub>2</sub> nanoparticles. Pt clusters ranging in size from 1 to 2 nm are uniformly distributed across the surface of the TiO<sub>2</sub> matrix. A pronounced charge transfer phenomenon is discernible between the Pt and TiO<sub>2</sub> components. It is revealed that the charge transfer enables faster transfer and separation of photogenerated electrons and holes, which are beneficial for the improvement of photocatalytic degradation of both ofloxacin and levofloxacin. The degradation capability can be attributed to the efficient generation of •OH or •O<sub>2</sub><sup>−</sup> species within the solution. The parallel adsorption model of TiO<sub>2</sub> on antibiotic molecules is verified, and the degradation reaction pathway has been elucidated. This work provides a facile method for optimizing the performance of TiO<sub>2</sub> photocatalysts, which can be extended to other oxide photocatalysts.</p>\",\"PeriodicalId\":100685,\"journal\":{\"name\":\"Interdisciplinary Materials\",\"volume\":\"3 6\",\"pages\":\"935-945\"},\"PeriodicalIF\":24.5000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12203\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Facile synthesis of Pt clusters decorated TiO2 nanoparticles for efficient photocatalytic degradation of antibiotics
TiO2 has attracted much attention in the field of photocatalytic degradation of antibiotics due to its good photostability, nontoxicity, and low cost. However, the rapid recombination of photogenerated carriers limits the further improvement of its photocatalytic activity. Here, a facile microwave-assisted hydrothermal method has been developed to prepare Pt clusters decorated TiO2 nanoparticles. Pt clusters ranging in size from 1 to 2 nm are uniformly distributed across the surface of the TiO2 matrix. A pronounced charge transfer phenomenon is discernible between the Pt and TiO2 components. It is revealed that the charge transfer enables faster transfer and separation of photogenerated electrons and holes, which are beneficial for the improvement of photocatalytic degradation of both ofloxacin and levofloxacin. The degradation capability can be attributed to the efficient generation of •OH or •O2− species within the solution. The parallel adsorption model of TiO2 on antibiotic molecules is verified, and the degradation reaction pathway has been elucidated. This work provides a facile method for optimizing the performance of TiO2 photocatalysts, which can be extended to other oxide photocatalysts.