{"title":"Outside Back Cover: Volume 3 Issue 6","authors":"","doi":"10.1002/idm2.12231","DOIUrl":"https://doi.org/10.1002/idm2.12231","url":null,"abstract":"<p><b>Outside Back Cover</b>: The review of doi:10.1002/idm2.12202 summarizes recent advancements in interface engineering for solid-state lithium metal batteries. As illustrated in the image, an interface layer is between lithium metal and solid-states electrolyte, which should not only play as buffer layer to void the intrinsic solid-solid contact but also severe as fast lithium pathway to uniform lithium deposition. Moreover, future viable interfacial layers should demonstrate exceptional chemical and electrochemical stability, high lithium ion conductivity, and soft yet intimate contact with both lithium and the electrolyte.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 6","pages":"ii"},"PeriodicalIF":24.5,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12231","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Outside Front Cover: Volume 3 Issue 6","authors":"","doi":"10.1002/idm2.12230","DOIUrl":"https://doi.org/10.1002/idm2.12230","url":null,"abstract":"<p><b>Outside Front Cover</b>: The study in doi:10.1002/idm2.12212 reports a novel design of onedimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs). The Pt–Pd bimetallic DTHs catalyst shown in the image exhibited uniform dense Pt dendritic nanobranches on the surface of 1D hollow Pt–Pd alloy nanotubes, possessing superior catalytic activity for ORR compared to the state-of-the-art commercial Pt/C catalysts. The Pt-Pd bimetallic DTHs configuration combines the advantages of 1D hollow nanostructures and dense Pt dendritic nanobranches, which results in rich electrochemical active surface sites, fast charge transport, and multiple dendritic anchoring points contact on carbon support, thus boosting its catalytic activity and stability towards electrocatalysis.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 6","pages":"i"},"PeriodicalIF":24.5,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12230","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junfeng Gu, Shuai Fu, Hang Ping, Wei Ji, Ji Zou, Hao Wang, Weimin Wang, Fan Zhang, Hanxing Liu, Zhengyi Fu
{"title":"Idea of macro-scale and micro-scale prestressed ceramics","authors":"Junfeng Gu, Shuai Fu, Hang Ping, Wei Ji, Ji Zou, Hao Wang, Weimin Wang, Fan Zhang, Hanxing Liu, Zhengyi Fu","doi":"10.1002/idm2.12224","DOIUrl":"https://doi.org/10.1002/idm2.12224","url":null,"abstract":"<p>The brittleness of ceramics restricts their engineering application. Prestressing is promising to solve the problem, yet still lacks enough attention and extensive investigation. This work proposes the idea of macro-scale and micro-scale prestressed ceramics: to form compressive prestress in macro- or micro-scale range in the ceramics by designed additional force, which offsets the fracture stress at the crack tips, then enhances the strength of ceramics. The macro-scale prestressed ceramic has a designed long-range ordering stress distribution in a large scale, similar to the reinforced concrete and tempered glass. The micro-scale ceramic has a designed short-range ordered stress distribution, similar to that in the natural biomaterials. Strategies constructing the macro-scale and micro-scale prestressed ceramics are planned. Future research interests and challenges are prospected for developing the mechanical properties of ceramics.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 6","pages":"897-906"},"PeriodicalIF":24.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12224","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inside Front Cover: Volume 3 Issue 5","authors":"","doi":"10.1002/idm2.12219","DOIUrl":"https://doi.org/10.1002/idm2.12219","url":null,"abstract":"<p><b>Inside Front Cover</b>: Cancer has long been considered as a serious threat to global public health. In the review of doi:10.1002/idm2.12199, the application of atypical artificial cells in anticancer area is summarized. As depicted in the image, this novel material represents a significant stride towards cancer therapy, inspiring the development of next-generation anticancer strategies.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 5","pages":"ii"},"PeriodicalIF":24.5,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12219","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Outside Back Cover: Volume 3 Issue 5","authors":"","doi":"10.1002/idm2.12221","DOIUrl":"https://doi.org/10.1002/idm2.12221","url":null,"abstract":"<p><b>Outside Back Cover</b>: The cover image of doi:10.1002/idm2.12181 shows a magnified view of an osteochondral defect in the left femur with an implanted 3D-bioprinted biphasic scaffold. The scaffold consists of a cartilage layer (blue) and a subchondral bone layer (purple), created using multicellular bioprinting technology. In the cartilage layer, GelMA loaded with articular chondrocytes (ACs, yellow) and bone marrow mesenchymal stem cells (BMSCs, red) interacts to maintain the phenotype of ACs and promote BMSC chondrogenesis. In the subchondral bone layer, GelMA/Sr-CSH (yellow fibers) with BMSCs releases bioactive ions (Ca, Si, Sr) that enhance BMSC osteogenesis and stimulate ACs. GelMA supports osteochondral interface reconstruction.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 5","pages":"iv"},"PeriodicalIF":24.5,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12221","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inside Back Cover: Volume 3 Issue 5","authors":"","doi":"10.1002/idm2.12220","DOIUrl":"https://doi.org/10.1002/idm2.12220","url":null,"abstract":"<p><b>Inside Back Cover</b>: In a study reported at doi:10.1002/idm2.12198, a novel flexible, conductive, and self-adhesive dry electrode was designed that can steadily collect bioelectrical signals from the human brain, heart, and muscles during sustained exercise. Even under stretched and deformed conditions, the electrode maintains good conductivity, as evidenced by the sustained brightness of a connected light bulb. This innovation opens up new possibilities for long-term medical monitoring in complex daily environments and will pave the way for the further development of wearable medical devices and remote health monitoring.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 5","pages":"iii"},"PeriodicalIF":24.5,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12220","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Outside Front Cover: Volume 3 Issue 5","authors":"","doi":"10.1002/idm2.12218","DOIUrl":"https://doi.org/10.1002/idm2.12218","url":null,"abstract":"<p><b>Outside Front Cover</b>: The cover image of doi:10.1002/idm2.12194 showcases a piezoelectric elastomer material based on barium titanate (BaTiO<sub>3</sub>), which is capable of generating reactive oxygen species (ROS) under mechanical pressure. This innovative material holds the potential for antimicrobial applications in the human body, particularly in load-bearing areas such as the soles of the feet, oral cavity, bones, and joints. The visual representation captures the essence of the material's ability to harness the piezoelectric effect to combat infections, highlighting its promising future in the field of antimicrobial materials.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 5","pages":"i"},"PeriodicalIF":24.5,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12218","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Construction of dendritic Pt–Pd bimetallic nanotubular heterostructure for advanced oxygen reduction","authors":"Mingwei Wang, Zhiyi Hu, Jieheng Lv, Zhiwen Yin, Zhewei Xu, Jingfeng Liu, Shihao Feng, Xiaoqian Wang, Jiazhen He, Sicheng Luo, Dafu Zhao, Hang Li, Xuemin Luo, Qi Liu, Damin Liu, Baolian Su, Dongyuan Zhao, Yong Liu","doi":"10.1002/idm2.12212","DOIUrl":"https://doi.org/10.1002/idm2.12212","url":null,"abstract":"<p>Compositions and morphologies of Pt-based electrocatalysts have great impact on the electrocatalytic activity and stability of oxygen reduction reaction (ORR). Herein, we report a novel design of one-dimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs) by controlling the degree of Pt<sup>2+</sup>-Pt reduction reaction and Pd-Pt galvanic replacement reaction with uniform Pd nanowires as sacrificial templates. The obtained Pt–Pd bimetallic DTHs catalyst exhibited uniform and dense Pt dendritic nanobranches on the surface of 1D hollow Pt–Pd alloy nanotubes, possessing superior catalytic activity for ORR compared to state-of-the-art commercial Pt/C catalysts. Typically, the Pt<sub>4</sub>Pd DTHs catalyst showed efficient mass activity (MA, 1.05 A mg<sub>Pt</sub><sup>−1</sup>) and specific activity (SA, 1.25 mA cm<sub>Pt</sub><sup>−2</sup>) at 0.9 V (vs. RHE), and the catalyst exhibited high stability with 90.4% MA retention after 20 000 potential cycles. The Pt–Pd bimetallic DTHs configuration combines the advantages of 1D hollow nanostructures and dense Pt dendritic nanobranches, which results in rich electrochemical active surface sites, fast charge transport, and multiple dendritic anchoring points contact on carbon support, thus boosting its catalytic activity and stability towards electrocatalysis.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 6","pages":"907-918"},"PeriodicalIF":24.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12212","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biomolecule-responsive polymers and their bio-applications","authors":"Yuting Xiong, Minmin Li, Guangyan Qing","doi":"10.1002/idm2.12210","DOIUrl":"https://doi.org/10.1002/idm2.12210","url":null,"abstract":"<p>Precise recognition and specific interactions between biomolecules are key prerequisites for ensuring the performance of all actives within living organisms. The convergence of biomolecular recognition systems into synthetic materials could endow the materials with high specificity and biological sensitivity; this, in turn, enables precise drug release, monitoring or detection of important biomolecules, and cell manipulation through targeted capture or release of specific biomolecules. Meanwhile, from the perspective of materials science, the application of conventional polymers in practical biological systems poses several challenges, such as low responsiveness and sensitivity, inadequate targetability, insufficient anti-interference capacities, and unsatisfactory biocompatibility. These problems could be partly attributed to the polymers' weak discrimination abilities toward target biomolecules in the presence of interfering substances with high abundance. In particular, the proposition of “precision medicine” project raises higher demands for the design of biomaterials in terms of their precision and targetability. Therefore, there is an urgent demand for the development of new-generation biomaterials with precise recognition and sensitive responsiveness comparable to biomacromolecules. This promotes a new research direction of biomolecule-responsive polymers and their diverse applications. This review focuses on the origin and construction of biomolecule-responsive polymers, as well as their attractive applications in drug delivery systems, bio-detection, bio-sensing, separation, and enrichment, as well as regulating cell adhesion.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 6","pages":"865-896"},"PeriodicalIF":24.5,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12210","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ductile inorganic semiconductors for deformable electronics","authors":"Xiaocui Li, Fu-Rong Chen, Yang Lu","doi":"10.1002/idm2.12209","DOIUrl":"https://doi.org/10.1002/idm2.12209","url":null,"abstract":"<p>Traditionally, it is relatively easy to process metal materials and polymers (plastics), while ceramic and inorganic semiconductor materials are hard to process, due to their intrinsic brittleness caused by directional covalent bonds or the strong electrostatic interactions among ionic species. The brittleness of semiconductor materials, which may degrade their functional performance and cause catastrophic failures, has excluded them from many application scenarios. The exploration on room-temperature ductile semiconductors has been a long pursuit of mankind for fabricating deformable and more robust electronics. Guided by this goal, researchers have already found that the plasticity of brittle semiconductors can be enhanced by size effects, which include fewer pre-existing micro-cracks and increased dislocation activity, charge characteristics, and defect density. It has also been explored that a few quasi-layered/van der Waals semiconductors can have exceptional room-temperature metal-like plasticity, enabled by the relatively weak interlayer bonding and easy interlayer gliding. More recently, intrinsic exceptional plasticity has been found in a group of all-inorganic perovskites (CsPbX<sub>3</sub>, X = Cl, Br and I), which can be morphed into distinct morphologies through multislip at room temperature, without affecting their functional properties and bandgap energy. Based on the above research status, in this review, we will discuss and present the relevant works on the plasticity found in inorganic semiconductors and the proposed deformation mechanisms. The potential applications and bottlenecks of plastic semiconductors in manufacturing next-generation deformable electronic/optoelectronic devices and energy systems will also be discussed.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 6","pages":"835-846"},"PeriodicalIF":24.5,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12209","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}