Interdisciplinary Materials最新文献

筛选
英文 中文
Outside Back Cover: Volume 4 Issue 1
IF 24.5
Interdisciplinary Materials Pub Date : 2025-01-16 DOI: 10.1002/idm2.12237
{"title":"Outside Back Cover: Volume 4 Issue 1","authors":"","doi":"10.1002/idm2.12237","DOIUrl":"https://doi.org/10.1002/idm2.12237","url":null,"abstract":"<p><b>Outside Back Cover</b>: The cover of doi:10.1002/idm2.12216 artistically captures the global rise of high-entropy alloys (HEAs) in hydrogen storage technology through a striking composition where Earth seamlessly transforms into a multi-element HEA structure, symbolizing how this revolutionary material system is rapidly sweeping across the world. The dynamic transition from Earth's surface to the colorful atomic arrangement of HEAs, decorated with hydrogen molecules (blue spheres), represents the accelerating worldwide adoption and research of HEA-based hydrogen storage solutions. This comprehensive review examines how HEAs are transforming the landscape of solid-state hydrogen storage technology, pointing toward a sustainable energy future.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"4 1","pages":"iv"},"PeriodicalIF":24.5,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12237","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inside Front Cover: Volume 4 Issue 1 封面内页:第 4 卷第 1 期
IF 24.5
Interdisciplinary Materials Pub Date : 2025-01-16 DOI: 10.1002/idm2.12235
{"title":"Inside Front Cover: Volume 4 Issue 1","authors":"","doi":"10.1002/idm2.12235","DOIUrl":"https://doi.org/10.1002/idm2.12235","url":null,"abstract":"<p><b>Inside Front Cover</b>: In the review of doi:10.1002/idm2.12214, the chemical strategies to improve the safety of organic/polymeric conjugated materials in biomedical applications are summarized and discussed. As depicted in the image, the precise designed materials would become metabolizable, or degradable by either endogenous reactive oxygen species or external stimuli, and subsequently excreted through liver or kidney. After disease diagnosis or treatment, such materials could be rapidly inactivated and subsequently excreted from the body, exhibiting high biological safety due to its efficient elimination, which highlight their scientific significance with biomedical and even clinical application values.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"4 1","pages":"ii"},"PeriodicalIF":24.5,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12235","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outside Front Cover: Volume 4 Issue 1 封面外页:第 4 卷第 1 期
IF 24.5
Interdisciplinary Materials Pub Date : 2025-01-16 DOI: 10.1002/idm2.12183
{"title":"Outside Front Cover: Volume 4 Issue 1","authors":"","doi":"10.1002/idm2.12183","DOIUrl":"https://doi.org/10.1002/idm2.12183","url":null,"abstract":"<p><b>Outside Front Cover</b>: The study reported in doi:10.1002/idm2.12226 presents a highperformance triboelectric nanogenerator (TENG) featuring a double-spiral zigzag-origami structure. This image illustrates that the TENG system efficiently harvests energy from ocean waves by converting low-frequency wave vibrations into electricity. Equipped with a powermanaged circuit, this TENG effectively powers a wireless water quality sensor and transmits data without the need for an external power source. These findings advance the development of sustainable, renewable energy technologies for oceanic applications, offering new avenues for the design of innovative materials and structures in energy harvesting.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"4 1","pages":"i"},"PeriodicalIF":24.5,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12183","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inside Back Cover: Volume 4 Issue 1 封底内页第 4 卷第 1 期
IF 24.5
Interdisciplinary Materials Pub Date : 2025-01-16 DOI: 10.1002/idm2.12236
{"title":"Inside Back Cover: Volume 4 Issue 1","authors":"","doi":"10.1002/idm2.12236","DOIUrl":"https://doi.org/10.1002/idm2.12236","url":null,"abstract":"<p><b>Inside Back Cover</b>: The cover image of doi:10.1002/idm2.12222 presents an engineered FeF<sub>2</sub> electrode through the optimization of electrode materials and a sodium alginate binder relying on robust interactions. This engineering results in an optimized electrode architecture that exhibits resistance to the dissolution of transition metal ions, thus enhancing the cycling stability of conversion-type electrode materials.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"4 1","pages":"iii"},"PeriodicalIF":24.5,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12236","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outside Back Cover: Volume 3 Issue 6 封底外页:第 3 卷第 6 期
IF 24.5
Interdisciplinary Materials Pub Date : 2024-11-15 DOI: 10.1002/idm2.12231
{"title":"Outside Back Cover: Volume 3 Issue 6","authors":"","doi":"10.1002/idm2.12231","DOIUrl":"https://doi.org/10.1002/idm2.12231","url":null,"abstract":"<p><b>Outside Back Cover</b>: The review of doi:10.1002/idm2.12202 summarizes recent advancements in interface engineering for solid-state lithium metal batteries. As illustrated in the image, an interface layer is between lithium metal and solid-states electrolyte, which should not only play as buffer layer to void the intrinsic solid-solid contact but also severe as fast lithium pathway to uniform lithium deposition. Moreover, future viable interfacial layers should demonstrate exceptional chemical and electrochemical stability, high lithium ion conductivity, and soft yet intimate contact with both lithium and the electrolyte.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 6","pages":"ii"},"PeriodicalIF":24.5,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12231","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outside Front Cover: Volume 3 Issue 6 封面外页:第 3 卷第 6 期
IF 24.5
Interdisciplinary Materials Pub Date : 2024-11-15 DOI: 10.1002/idm2.12230
{"title":"Outside Front Cover: Volume 3 Issue 6","authors":"","doi":"10.1002/idm2.12230","DOIUrl":"https://doi.org/10.1002/idm2.12230","url":null,"abstract":"<p><b>Outside Front Cover</b>: The study in doi:10.1002/idm2.12212 reports a novel design of onedimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs). The Pt–Pd bimetallic DTHs catalyst shown in the image exhibited uniform dense Pt dendritic nanobranches on the surface of 1D hollow Pt–Pd alloy nanotubes, possessing superior catalytic activity for ORR compared to the state-of-the-art commercial Pt/C catalysts. The Pt-Pd bimetallic DTHs configuration combines the advantages of 1D hollow nanostructures and dense Pt dendritic nanobranches, which results in rich electrochemical active surface sites, fast charge transport, and multiple dendritic anchoring points contact on carbon support, thus boosting its catalytic activity and stability towards electrocatalysis.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 6","pages":"i"},"PeriodicalIF":24.5,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12230","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anion-repulsive polyoxometalate@MOF-modified separators for dendrite-free and high-rate lithium batteries
IF 24.5
Interdisciplinary Materials Pub Date : 2024-10-28 DOI: 10.1002/idm2.12225
Yi Liu, Tianyi Hou, Wei Zhang, Bin Gou, Faqiang Li, Haonan Wang, Xin Deng, Dinggen Li, Henghui Xu, Yunhui Huang
{"title":"Anion-repulsive polyoxometalate@MOF-modified separators for dendrite-free and high-rate lithium batteries","authors":"Yi Liu,&nbsp;Tianyi Hou,&nbsp;Wei Zhang,&nbsp;Bin Gou,&nbsp;Faqiang Li,&nbsp;Haonan Wang,&nbsp;Xin Deng,&nbsp;Dinggen Li,&nbsp;Henghui Xu,&nbsp;Yunhui Huang","doi":"10.1002/idm2.12225","DOIUrl":"https://doi.org/10.1002/idm2.12225","url":null,"abstract":"<p>Commercial polyolefin separators in lithium batteries encounter issues of uncontrolled lithium-dendrite growth and safety incidents due to their low Li<sup>+</sup> transference numbers (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>t</mi>\u0000 \u0000 <msup>\u0000 <mi>Li</mi>\u0000 \u0000 <mo>+</mo>\u0000 </msup>\u0000 </msub>\u0000 </mrow>\u0000 </semantics></math>) and low melting points. To address these challenges, this study proposes an innovative approach by upgrading conventional separators through the incorporation of metal-organic framework (MOF)-confined polyoxometalate (POM). The presence of POM restricts anion diffusion through electrostatic repulsion while facilitating Li<sup>+</sup> transport within MOF nanochannels through their affinity for lithium ions. Moreover, MOF confinement effectively mitigates the acidification of electrolytes induced by POM. As a proof-of-concept, the polypropylene separators decorated with phosphotungstic acid@UIO66 (denoted as PW<sub>12</sub>@UIO66-PP) exhibit remarkable lithium-ion conductivity of 0.78 mS cm<sup>−1</sup> with a high <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>t</mi>\u0000 \u0000 <msup>\u0000 <mi>Li</mi>\u0000 \u0000 <mo>+</mo>\u0000 </msup>\u0000 </msub>\u0000 </mrow>\u0000 </semantics></math> of 0.75 at room temperature. The modified separators also display excellent thermal stability, preventing significant shrinkage even at 150°C. Furthermore, Li symmetric cells employing PW<sub>12</sub>@UIO66-PP separators exhibit stable cycling for 1000 h, benefiting from rapid Li-ion transport and uniform deposition. Additionally, the modified separator shows promising adaptability to industrial manufacturing of lithium-ion batteries, as evidenced by the assembly of a 4 Ah NCM811/graphite pouch cell that retains 97% capacity after 350 cycles at C/3, thus highlighting its potential for practical applications.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"4 1","pages":"190-200"},"PeriodicalIF":24.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12225","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143120212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-performance triboelectric nanogenerator based on a double-spiral zigzag-origami structure for continuous sensing and signal transmission in marine environment
IF 24.5
Interdisciplinary Materials Pub Date : 2024-10-20 DOI: 10.1002/idm2.12226
Yang Jiang, Pengfei Chen, Jiajia Han, Xi Liang, Yutong Ming, Shijie Liu, Tao Jiang, Zhong Lin Wang
{"title":"High-performance triboelectric nanogenerator based on a double-spiral zigzag-origami structure for continuous sensing and signal transmission in marine environment","authors":"Yang Jiang,&nbsp;Pengfei Chen,&nbsp;Jiajia Han,&nbsp;Xi Liang,&nbsp;Yutong Ming,&nbsp;Shijie Liu,&nbsp;Tao Jiang,&nbsp;Zhong Lin Wang","doi":"10.1002/idm2.12226","DOIUrl":"https://doi.org/10.1002/idm2.12226","url":null,"abstract":"<p>With the rapid evolution of emerging technologies like artificial intelligence, Internet of Things, big data, robotics, and novel materials, the landscape of global ocean science and technology is undergoing significant transformation. Ocean wave energy stands out as one of the most promising clean and renewable energy sources. Triboelectric nanogenerators (TENGs) represent a cutting-edge technology for harnessing such random and ultra-low frequency energy toward blue energy. A high-performance TENG incorporating a double-spiral zigzag-origami structure is engineered to achieve continuous sensing and signal transmission in marine environment. Integrating the double-spiral origami into the TENG system enables efficient energy harvesting from the ocean waves by converting low-frequency wave vibrations into high-frequency motions. Under the water wave triggering of 0.8 Hz, the TENG generates a maximum peak power density of 55.4 W m<sup>−</sup><sup>3</sup>, and a TENG array with six units can generate an output current of 375.2 μA (density of 468.8 mA m<sup>−</sup><sup>3</sup>). This power-managed TENG array effectively powers a wireless water quality detector and transmits signals without an external power supply. The findings contribute to the development of sustainable and renewable energy technologies for oceanic applications and open new pathways for designing advanced materials and structures in the field of energy harvesting.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"4 1","pages":"201-212"},"PeriodicalIF":24.5,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12226","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143117597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strain-induced morphology evolution and charge transport in conjugated polymer films
IF 24.5
Interdisciplinary Materials Pub Date : 2024-10-17 DOI: 10.1002/idm2.12223
Zicheng Ding, Kui Zhao, Yanchun Han
{"title":"Strain-induced morphology evolution and charge transport in conjugated polymer films","authors":"Zicheng Ding,&nbsp;Kui Zhao,&nbsp;Yanchun Han","doi":"10.1002/idm2.12223","DOIUrl":"https://doi.org/10.1002/idm2.12223","url":null,"abstract":"<p>Stretchable conjugated polymer films are pivotal in flexible and wearable electronics. Despite significant advancements in film stretchability through molecular engineering and multicomponent blending, these conjugated polymer films often exhibit limited elastic ranges and reduced carrier mobilities under large strain or after cyclic stretching. These limitations hinder their application in wearable electronics. Therefore, it is imperative to reveal the mechanical fatigue mechanisms and incorporate multiple strain energy dissipation strategies to enhance elastic deformation and electrical performance of stretched conjugated polymer films. In this review, we begin by introducing the typical mechanical behaviors of conjugated polymer films. Subsequently, we discuss the multiscale structural evolution under various stretching conditions based on both in-situ and ex-situ characterizations. This analysis is further related to the diverse strain energy dissipation mechanisms. We next establish the correlation between strain-induced microstructure and the electrical performance of stretched conjugated polymer films. After that, we propose to develop highly elastic conjugated polymer films by constructing stable crosslinks and promoting polymer dynamics in low-crystalline polymer films. Finally, we highlight the future opportunities for high-performance and mechanically stable devices based on stretchable conjugated polymer films.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"4 1","pages":"138-161"},"PeriodicalIF":24.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12223","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Idea of macro-scale and micro-scale prestressed ceramics 宏观和微观预应力陶瓷的理念
IF 24.5
Interdisciplinary Materials Pub Date : 2024-10-17 DOI: 10.1002/idm2.12224
Junfeng Gu, Shuai Fu, Hang Ping, Wei Ji, Ji Zou, Hao Wang, Weimin Wang, Fan Zhang, Hanxing Liu, Zhengyi Fu
{"title":"Idea of macro-scale and micro-scale prestressed ceramics","authors":"Junfeng Gu,&nbsp;Shuai Fu,&nbsp;Hang Ping,&nbsp;Wei Ji,&nbsp;Ji Zou,&nbsp;Hao Wang,&nbsp;Weimin Wang,&nbsp;Fan Zhang,&nbsp;Hanxing Liu,&nbsp;Zhengyi Fu","doi":"10.1002/idm2.12224","DOIUrl":"https://doi.org/10.1002/idm2.12224","url":null,"abstract":"<p>The brittleness of ceramics restricts their engineering application. Prestressing is promising to solve the problem, yet still lacks enough attention and extensive investigation. This work proposes the idea of macro-scale and micro-scale prestressed ceramics: to form compressive prestress in macro- or micro-scale range in the ceramics by designed additional force, which offsets the fracture stress at the crack tips, then enhances the strength of ceramics. The macro-scale prestressed ceramic has a designed long-range ordering stress distribution in a large scale, similar to the reinforced concrete and tempered glass. The micro-scale ceramic has a designed short-range ordered stress distribution, similar to that in the natural biomaterials. Strategies constructing the macro-scale and micro-scale prestressed ceramics are planned. Future research interests and challenges are prospected for developing the mechanical properties of ceramics.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 6","pages":"897-906"},"PeriodicalIF":24.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12224","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信