IEEE Open Journal of the Solid-State Circuits Society最新文献

筛选
英文 中文
The Problem of Spurious Emissions in 5G FR2 Phased Arrays, and a Solution Based on an Upmixer With Embedded LO Leakage Cancellation 5G FR2 相控阵中的杂散发射问题,以及基于嵌入式 LO 漏泄消除的上混频器的解决方案
IEEE Open Journal of the Solid-State Circuits Society Pub Date : 2024-10-28 DOI: 10.1109/OJSSCS.2024.3487548
Arun Paidimarri;Yujiro Tojo;Caglar Ozdag;Alberto Valdes-Garcia;Bodhisatwa Sadhu
{"title":"The Problem of Spurious Emissions in 5G FR2 Phased Arrays, and a Solution Based on an Upmixer With Embedded LO Leakage Cancellation","authors":"Arun Paidimarri;Yujiro Tojo;Caglar Ozdag;Alberto Valdes-Garcia;Bodhisatwa Sadhu","doi":"10.1109/OJSSCS.2024.3487548","DOIUrl":"https://doi.org/10.1109/OJSSCS.2024.3487548","url":null,"abstract":"The wireless spectrum is a shared resource. Transmitters are expected to transmit only at their allotted frequency range and not at other frequencies. Transmitters are not perfect, and therefore, there are regulations that limit the transmitted energy outside the intended transmission frequencies. In this article, we provide an overview of the transmit mask requirements for 5G FR2, and the main factors that contribute to unwanted emissions. We then present some key radio architecture and circuit design considerations to help meet these emission requirements. Since the local oscillator (LO) leakage spur is one of the worst offenders, we also introduce an LO cancellation technique in the upmixer. We introduce two actuator circuits to control two independent LO signals at the upmixer output, one resulting from the upconversion from dc to LO, and another resulting from downconversion from 2 LO to LO. These two independent LO outputs then provide 2-D phase and amplitude control and can combine to create an equal and opposite LO signal at the output of the upmixer. The LO cancellation results in better than −57-dBc LO leakage across all candidate frequencies. Finally, we present extensive over-the-air (OTA) measurement validation of the LO suppression across frequencies, signal levels, and 64-element beam steering across a 60 beam steering range.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"4 ","pages":"193-211"},"PeriodicalIF":0.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10737135","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SAR-Assisted Energy-Efficient Hybrid ADCs SAR 辅助型高能效混合 ADC
IEEE Open Journal of the Solid-State Circuits Society Pub Date : 2024-10-01 DOI: 10.1109/OJSSCS.2024.3472000
Kent Edrian Lozada;Dong-Jin Chang;Dong-Ryeol Oh;Min-Jae Seo;Seung-Tak Ryu
{"title":"SAR-Assisted Energy-Efficient Hybrid ADCs","authors":"Kent Edrian Lozada;Dong-Jin Chang;Dong-Ryeol Oh;Min-Jae Seo;Seung-Tak Ryu","doi":"10.1109/OJSSCS.2024.3472000","DOIUrl":"https://doi.org/10.1109/OJSSCS.2024.3472000","url":null,"abstract":"The distinct advantages of low power consumption and hardware compactness make SAR ADCs especially appealing in scaled CMOS technologies, garnering significant attention. The residue left on the capacitor digital-to-analog converter (CDAC) after conversion in the SAR ADC negates the need for complex residue extraction circuits. This crucial feature has inspired numerous SAR-assisted architectural variations, employed in a range of applications from high resolution to high speed. This article introduces several energy-efficient hybrid ADC architectures that incorporate SAR ADCs as their sub blocks, including the following: SAR-assisted subranging SAR, which saves DAC switching power and can detect skew errors for time-interleaved ADCs; SAR-flash hybrid for energy-efficient high-speed conversion; SAR-assisted dual-residue pipelined ADC, which eliminates the stringent requirement for residue gain accuracy; and SAR-assisted delta–sigma modulator (DSM) with digital-domain noise coupling, which reduces the number of required analog integrators.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"4 ","pages":"163-175"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10702510","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systematic Equation-Based Design of a 10-Bit, 500-MS/s Single-Channel SAR A/D Converter With 2-GHz Resolution Bandwidth 基于系统方程设计具有 2 GHz 分辨率带宽的 10 位 500-MS/s 单通道 SAR A/D 转换器
IEEE Open Journal of the Solid-State Circuits Society Pub Date : 2024-09-26 DOI: 10.1109/OJSSCS.2024.3469109
Tetsuya Iizuka;Ritaro Takenaka;Hao Xu;Asad A. Abidi
{"title":"Systematic Equation-Based Design of a 10-Bit, 500-MS/s Single-Channel SAR A/D Converter With 2-GHz Resolution Bandwidth","authors":"Tetsuya Iizuka;Ritaro Takenaka;Hao Xu;Asad A. Abidi","doi":"10.1109/OJSSCS.2024.3469109","DOIUrl":"https://doi.org/10.1109/OJSSCS.2024.3469109","url":null,"abstract":"A 10-b self-timed SAR A/D converter is designed in 28-nm FDSOI CMOS to convert at 500 MS/s. It maintains this effective number of bits across an input bandwidth of 2 GHz, because it will be used as one of eight identical converters in a time-interleaved system to reach a conversion rate of 4 GS/s. This circuit is based almost entirely on formal expressions for every building block circuit. This approach led to a strikingly short development time where every design choice was defensibly optimum and the prototype chip yielded near-textbook performance from the first silicon. The figure of merit is at the state of the art.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"4 ","pages":"147-162"},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10695771","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digital Phase-Locked Loops: Exploring Different Boundaries 数字锁相环:探索不同的边界
IEEE Open Journal of the Solid-State Circuits Society Pub Date : 2024-09-20 DOI: 10.1109/OJSSCS.2024.3464551
Yuncheng Zhang;Dingxin Xu;Kenichi Okada
{"title":"Digital Phase-Locked Loops: Exploring Different Boundaries","authors":"Yuncheng Zhang;Dingxin Xu;Kenichi Okada","doi":"10.1109/OJSSCS.2024.3464551","DOIUrl":"https://doi.org/10.1109/OJSSCS.2024.3464551","url":null,"abstract":"This article examines the research area of digital phase-locked loops (DPLLs), a critical component in modern electronic systems, from wireless communication devices to RADAR systems and digital processors. As the demands for higher integration levels in electronic systems increase, DPLLs have become a key point for research and development. Implemented in scaled digital CMOS process, DPLLs offer potential advantages over traditional analog designs and have explored the boundaries of phaselocked loop (PLL) design. This article delves into several key directions of DPLL research: improvements in PLL performance through digital methods, the automation of PLL design using commercial electronic design automation (EDA) tools, and innovative approaches for using low-frequency references in wireless applications. Specifically, it covers the DPLL architectures using time-to-digital and digital-to-time converters, as well as bang–bang phase detectors, fully synthesizable DPLLs, and the integration of oversampling techniques that enable the use of a 32-kHz reference to avoid using bulky higher-frequency reference sources. This review outlines current achievements of DPLLs research in these directions.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"4 ","pages":"176-192"},"PeriodicalIF":0.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10684740","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
8-Shaped Inductors: An Essential Addition to RFIC Designers’ Toolbox 8 型电感器:射频集成电路设计人员工具箱中的重要补充
IEEE Open Journal of the Solid-State Circuits Society Pub Date : 2024-09-06 DOI: 10.1109/OJSSCS.2024.3455269
Pingda Guan;Haikun Jia;Wei Deng;Teerachot Siriburanon;Robert Bogdan Staszewski;Zhihua Wang;Baoyong Chi
{"title":"8-Shaped Inductors: An Essential Addition to RFIC Designers’ Toolbox","authors":"Pingda Guan;Haikun Jia;Wei Deng;Teerachot Siriburanon;Robert Bogdan Staszewski;Zhihua Wang;Baoyong Chi","doi":"10.1109/OJSSCS.2024.3455269","DOIUrl":"https://doi.org/10.1109/OJSSCS.2024.3455269","url":null,"abstract":"The rapidly advancing field of millimeter-wave (mm-wave) radio-frequency integrated circuit (RFIC) design has ushered in an era of remarkable innovation, particularly in the realm of on-chip passive devices. Among them, 8-shaped inductors have emerged as a novel and promising variant, attracting significant research interest thanks to their unique geometry and electromagnetic (EM) properties. The distinctive feature of 8-shaped inductors lies in their antiparallel magnetic fields due to the opposing current flows within the two turns, enabling manifold applications. In this article, we comprehensively explore the 8-shaped inductors with a focus on their diverse utilizations, including EM interference (EMI) reduction, compactness of RF layout, provision for a magnetic feedforward/feedback arrangement, and oscillation mode manipulation, thereby demonstrating that the 8-shaped inductor can be an essential addition to RFIC designers’ toolbox.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"4 ","pages":"131-146"},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10668829","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-Wideband 4-Bit Distributed Phase Shifters Using Lattice Network at K/Ka- and E/W-Band 在 K/Ka 和 E/W 波段使用晶格网络的超宽带 4 位分布式移相器
IEEE Open Journal of the Solid-State Circuits Society Pub Date : 2024-09-02 DOI: 10.1109/OJSSCS.2024.3453777
Sungwon Kwon;Minjae Jung;Byung-Wook Min
{"title":"Ultra-Wideband 4-Bit Distributed Phase Shifters Using Lattice Network at K/Ka- and E/W-Band","authors":"Sungwon Kwon;Minjae Jung;Byung-Wook Min","doi":"10.1109/OJSSCS.2024.3453777","DOIUrl":"https://doi.org/10.1109/OJSSCS.2024.3453777","url":null,"abstract":"In this article, we introduce an ultra-wideband 4-bit distributed phase shifter using a lattice network. To achieve wider bandwidth, the proposed phase shifter employed an all-pass lattice network instead of the traditional low-pass ladder network. Seven cascaded 22.5° lattice phase shifters and one switched line 180° phase shifter were used to achieve 360° phase shift range. Based on our theoretical analysis, we designed the lattice network as a constant-phase shifter rather than a delay line. Implementations in the K/Ka- and E/W-bands validate the suitability of the lattice network for constant-phase shifting. Fabricated using 28-nm bulk CMOS technology, the K/Ka-band phase shifter had a size of 0.45 mm2 excluding pads. Within the frequency range of 20.5–35.5 GHz, the root-mean-square (RMS) phase error ranged from 1.6 to 5°, the RMS gain error ranged from 0.3 to 0.6 dB, and the return loss remained above 10 dB. At 28 GHz, the insertion loss was \u0000<inline-formula> <tex-math>$11.6pm 0$ </tex-math></inline-formula>\u0000.8 dB without dc power consumption. Fabricated using 28-nm FD-SOI technology, the E/W-band phase shifter had a size of 0.3 mm2 excluding pads. Within the frequency range of 63.5–100.5 GHz, the RMS phase error ranged from 2.4 to 4.6°, the RMS gain error ranged from 0.44 to 1 dB, and the return loss remained above 10 dB. At 82 GHz, the insertion loss was \u0000<inline-formula> <tex-math>$11.9pm 1$ </tex-math></inline-formula>\u0000.1 dB without dc power consumption. The proposed phase shifter demonstrated exceptional performance for multistandard operation, achieving low RMS phase and gain errors across a wide fractional bandwidth of 53.6% and 45.1%, respectively.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"4 ","pages":"122-130"},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10663470","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing RF Fingerprint Generation in Power Amplifiers: Unequally Spaced Multitone Design Approaches and Considerations 增强功率放大器中的射频指纹生成:不等间隔多音设计方法和注意事项
IEEE Open Journal of the Solid-State Circuits Society Pub Date : 2024-08-30 DOI: 10.1109/OJSSCS.2024.3451401
Chengyu Fan;Junting Deng;Ethan Chen;Vanessa Chen
{"title":"Enhancing RF Fingerprint Generation in Power Amplifiers: Unequally Spaced Multitone Design Approaches and Considerations","authors":"Chengyu Fan;Junting Deng;Ethan Chen;Vanessa Chen","doi":"10.1109/OJSSCS.2024.3451401","DOIUrl":"https://doi.org/10.1109/OJSSCS.2024.3451401","url":null,"abstract":"The rapid growth of Internet of Things (IoT) devices and communication standards has led to an increasing demand for data security, particularly with limited hardware resources. In addition to conventional software-level data encryption, physical-layer security techniques, such as device-specific radio frequency fingerprints (RFFs), are emerging as promising solutions. This article first summarizes prior arts on timestamped RFFs generation and reconfigurable power amplifier (PA) designs. Following that, an innovative 2-stage PA incorporating a reconfigurable class A stage with a Doherty amplifier, designed in 65-nm CMOS to generate 4096 timestamped RFFs without introducing in-band power variation, is presented. Multiple 3-bit resistive digital-to-analog converters (RDACs) are applied to control body biasing units within the two-stage PA, facilitating the generation of massive and distinguishable RFFs. Subsequently, time-varying unequally spaced multitone (USMT) techniques are proposed to further elevate the count of available timestamped RFFs from 4096 to 16 384. The validation results of RFFs utilizing 64-QAM WiFi-6E advertising packets, employing time-varying USMT transmitted within the 5.39–5.41-GHz band, confirm the successful generation of 16 384 distinct RFF patterns. Moreover, the measurement results demonstrate that more than 11 504 RFFs among the generated patterns can be classified with an accuracy exceeding 99%.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"4 ","pages":"83-96"},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10660491","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Readout Scheme for PCM-Based Analog In-Memory Computing With Drift Compensation Through Reference Conductance Tracking 通过参考电导跟踪进行漂移补偿的基于 PCM 的模拟内存计算读出方案
IEEE Open Journal of the Solid-State Circuits Society Pub Date : 2024-07-25 DOI: 10.1109/OJSSCS.2024.3432468
Alessio Antolini;Andrea Lico;Francesco Zavalloni;Eleonora Franchi Scarselli;Antonio Gnudi;Mattia Luigi Torres;Roberto Canegallo;Marco Pasotti
{"title":"A Readout Scheme for PCM-Based Analog In-Memory Computing With Drift Compensation Through Reference Conductance Tracking","authors":"Alessio Antolini;Andrea Lico;Francesco Zavalloni;Eleonora Franchi Scarselli;Antonio Gnudi;Mattia Luigi Torres;Roberto Canegallo;Marco Pasotti","doi":"10.1109/OJSSCS.2024.3432468","DOIUrl":"https://doi.org/10.1109/OJSSCS.2024.3432468","url":null,"abstract":"This article presents a readout scheme for analog in-memory computing (AIMC) based on an embedded phase-change memory (ePCM). Conductance time drift is overcome with a hardware compensation technique based on a reference cell conductance tracking (RCCT). Accuracy drop due to circuits mismatch and variability involved in the computational chain are minimized with an optimized iterative program-and-verify algorithm applied to the phase-change memory (PCM) devices. The proposed AIMC scheme is designed and manufactured in a 90-nm STMicroelectronics CMOS technology, with the aim of adding a signed multiply-and-accumulate (MAC) computation feature to a Ge-Rich GeSbTe (GST) embedded PCM array. Experimental characterizations are performed under different operating conditions and show that the mean MAC decrease in time is approximately null at room temperature and reduced by a factor of 3 after 64-h bake at \u0000<inline-formula> <tex-math>$85~{^{circ }}$ </tex-math></inline-formula>\u0000C. Based on several MAC operations, the estimated \u0000<inline-formula> <tex-math>$512times 512$ </tex-math></inline-formula>\u0000 matrix-vector-multiplication (MVM) accuracy is 97.4%, whose decrease in time is less than 3% in the worst case.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"4 ","pages":"69-82"},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10609348","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Speed Wireline Links—Part I: Modeling 高速有线链路--第一部分:建模
IEEE Open Journal of the Solid-State Circuits Society Pub Date : 2024-07-24 DOI: 10.1109/OJSSCS.2024.3433324
Hossein Shakiba;Davide Tonietto;Ali Sheikholeslami
{"title":"High-Speed Wireline Links—Part I: Modeling","authors":"Hossein Shakiba;Davide Tonietto;Ali Sheikholeslami","doi":"10.1109/OJSSCS.2024.3433324","DOIUrl":"https://doi.org/10.1109/OJSSCS.2024.3433324","url":null,"abstract":"In a wireline link, we wish to model a wide variety of architectures and optimize their parameters, such as the feedforward equalizer and decision feedback equalizer tap coefficients, continuous-time linear equalizer frequency response, termination impedances, and possibly maximum-likelihood sequence estimation parameters, for a given channel and within a given set of constraints as dictated by the application requirements so as to minimize the link’s bit error rate. The modulation can be any of the PAM signaling schemes, such as NRZ or 4-PAM. To this end, we first model a general link architecture in Part I, and then optimize the link parameters in Part II.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"4 ","pages":"97-109"},"PeriodicalIF":0.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10608184","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Speed Wireline Links—Part II: Optimization and Performance Assessment 高速有线链路--第二部分:优化和性能评估
IEEE Open Journal of the Solid-State Circuits Society Pub Date : 2024-07-01 DOI: 10.1109/OJSSCS.2024.3421868
Hossein Shakiba;Davide Tonietto;Ali Sheikholeslami
{"title":"High-Speed Wireline Links—Part II: Optimization and Performance Assessment","authors":"Hossein Shakiba;Davide Tonietto;Ali Sheikholeslami","doi":"10.1109/OJSSCS.2024.3421868","DOIUrl":"https://doi.org/10.1109/OJSSCS.2024.3421868","url":null,"abstract":"In Part I of this article, we described the modeling of a general wireline link architecture. In this part, we provide a scheme for optimizing the link parameters and assessing its performance. The optimization process involves many parameters with constraints coming from application and implementation requirements. A brute-force approach to optimization can take a prohibitively long time and may not provide sufficient insight into the design iteration. To address this challenge, we divide the optimization process into specifying fixed parameters, calculating select parameters, and sweeping the rest. We then perform a link performance assessment to determine metrics typically used in wireline systems.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"4 ","pages":"110-121"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10579874","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信