Wenyu Peng;Xinling Yue;Willem D. van Driel;Guoqi Zhang;Sijun Du
{"title":"带数字dcb MPPT的双sshc摩擦电能采集整流器","authors":"Wenyu Peng;Xinling Yue;Willem D. van Driel;Guoqi Zhang;Sijun Du","doi":"10.1109/OJSSCS.2025.3573905","DOIUrl":null,"url":null,"abstract":"Triboelectric nanogenerator (TENG), advantageous in high energy density and flexibility, is promising as a sustainable energy source but can hardly be used to power edge devices directly due to its high-voltage ac output and varying capacitive impedance. To address it, this work proposes a power-conditioning interface with a fully integrated dual synchronous switch harvesting on capacitors (D-SSHC) rectifier for triboelectric energy extraction. Furthermore, a full digital duty-cycle-based (DCB) maximum power point tracking (MPPT) algorithm is developed to optimize the energy harvesting efficiency with simple implementation and continuous tracking. Designed and fabricated in a 0.18-<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>m BCD process, the proposed interface can extract energy at a maximum output voltage of 70 V. According to the measurement results, it achieves 99% MPPT efficiency and an energy extraction improvement of 598% compared to a full-bridge rectifier.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"5 ","pages":"200-211"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11016074","citationCount":"0","resultStr":"{\"title\":\"A Dual-SSHC Rectifier With Digital-DCB MPPT for Triboelectric Energy Harvesting\",\"authors\":\"Wenyu Peng;Xinling Yue;Willem D. van Driel;Guoqi Zhang;Sijun Du\",\"doi\":\"10.1109/OJSSCS.2025.3573905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Triboelectric nanogenerator (TENG), advantageous in high energy density and flexibility, is promising as a sustainable energy source but can hardly be used to power edge devices directly due to its high-voltage ac output and varying capacitive impedance. To address it, this work proposes a power-conditioning interface with a fully integrated dual synchronous switch harvesting on capacitors (D-SSHC) rectifier for triboelectric energy extraction. Furthermore, a full digital duty-cycle-based (DCB) maximum power point tracking (MPPT) algorithm is developed to optimize the energy harvesting efficiency with simple implementation and continuous tracking. Designed and fabricated in a 0.18-<inline-formula> <tex-math>$\\\\mu $ </tex-math></inline-formula>m BCD process, the proposed interface can extract energy at a maximum output voltage of 70 V. According to the measurement results, it achieves 99% MPPT efficiency and an energy extraction improvement of 598% compared to a full-bridge rectifier.\",\"PeriodicalId\":100633,\"journal\":{\"name\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"volume\":\"5 \",\"pages\":\"200-211\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11016074\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11016074/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11016074/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Dual-SSHC Rectifier With Digital-DCB MPPT for Triboelectric Energy Harvesting
Triboelectric nanogenerator (TENG), advantageous in high energy density and flexibility, is promising as a sustainable energy source but can hardly be used to power edge devices directly due to its high-voltage ac output and varying capacitive impedance. To address it, this work proposes a power-conditioning interface with a fully integrated dual synchronous switch harvesting on capacitors (D-SSHC) rectifier for triboelectric energy extraction. Furthermore, a full digital duty-cycle-based (DCB) maximum power point tracking (MPPT) algorithm is developed to optimize the energy harvesting efficiency with simple implementation and continuous tracking. Designed and fabricated in a 0.18-$\mu $ m BCD process, the proposed interface can extract energy at a maximum output voltage of 70 V. According to the measurement results, it achieves 99% MPPT efficiency and an energy extraction improvement of 598% compared to a full-bridge rectifier.