{"title":"The way to uncovering and utilizing marine microbial resources","authors":"Zhi-Feng Zhang, Meng Li","doi":"10.1016/j.engmic.2024.100175","DOIUrl":"10.1016/j.engmic.2024.100175","url":null,"abstract":"<div><div>Recently, Chen et al. published their breakthrough results on a marine microbial genomic catalog and genetic potentials in bioprospecting in Nature, providing unprecedented opportunities for development and utilization of genetic resources of marine microorganisms. To highlight this article, we summarized and highlighted their breakthroughs seriatim</div></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 4","pages":"Article 100175"},"PeriodicalIF":0.0,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yilin Le , Mengqi Zhang , Pengju Wu , Huilei Wang , Jinfeng Ni
{"title":"Biofuel production from lignocellulose via thermophile-based consolidated bioprocessing","authors":"Yilin Le , Mengqi Zhang , Pengju Wu , Huilei Wang , Jinfeng Ni","doi":"10.1016/j.engmic.2024.100174","DOIUrl":"10.1016/j.engmic.2024.100174","url":null,"abstract":"<div><div>The depletion of fossil fuels and their impact on the environment have led to efforts to develop alternative sustainable fuels. While biofuel derived from lignocellulose is considered a sustainable, renewable, and green energy source, enhancing biofuel production and achieving a cost-effective bioconversion of lignocellulose at existing bio-refineries remains a challenge. Consolidated bioprocessing (CBP) using thermophiles can simplify this operation by integrating multiple processes, such as hydrolytic enzyme production, lignocellulose degradation, biofuel fermentation, and product distillation. This paper reviews recent developments in the conversion of lignocellulose to biofuel using thermophile-based CBP. First, advances in thermostable enzyme and thermophilic lignocellulolytic microorganism discovery and development for lignocellulosic biorefinery use are outlined. Then, several thermophilic CBP candidates and thermophilic microbes engineered to drive CBP of lignocellulose are reviewed. CRISPR/Cas-based genome editing tools developed for thermophiles are also highlighted. The potential applications of the Design-Build-Test-Learn (DBTL) synthetic biology strategy for designing and constructing thermophilic CBP hosts are also discussed in detail. Overall, this review illustrates how to develop highly sophisticated thermophilic CBP hosts for use in lignocellulosic biorefinery applications.</div></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 4","pages":"Article 100174"},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhen-Ping Zou , Xiao-Peng Zhang , Qian Zhang, Bin-Cheng Yin, Ying Zhou, Bang-Ce Ye
{"title":"Genetically engineered bacteria as inflammatory bowel disease therapeutics","authors":"Zhen-Ping Zou , Xiao-Peng Zhang , Qian Zhang, Bin-Cheng Yin, Ying Zhou, Bang-Ce Ye","doi":"10.1016/j.engmic.2024.100167","DOIUrl":"10.1016/j.engmic.2024.100167","url":null,"abstract":"<div><p>Inflammatory bowel disease (IBD) is a chronic and recurrent disease caused by immune response disorders that disrupt the intestinal lumen symbiotic ecosystem and dysregulate mucosal immune functions. Current therapies available for IBD primarily focus on symptom management, making early diagnosis and prompt intervention challenging. The development of genetically engineered bacteria using synthetic biology presents a new strategy for addressing these challenges. In this review, we present recent breakthroughs in the field of engineered bacteria for the treatment and detection of IBD and describe how bacteria can be genetically modified to produce therapeutic molecules or execute diagnostic functions. In particular, we discuss the challenges faced in translating live bacterial therapeutics from bacterial design to delivery strategies for further clinical applications.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 4","pages":"Article 100167"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370324000298/pdfft?md5=3a5b04b4aba0ba2793c7531a99d8efa4&pid=1-s2.0-S2667370324000298-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenya Su , Wenjia Wang , Ling Li , Mengge Zhang , Hai Xu , Chengzhang Fu , Xiuhua Pang , Mingyu Wang
{"title":"Mechanisms of tigecycline resistance in Gram-negative bacteria: A narrative review","authors":"Wenya Su , Wenjia Wang , Ling Li , Mengge Zhang , Hai Xu , Chengzhang Fu , Xiuhua Pang , Mingyu Wang","doi":"10.1016/j.engmic.2024.100165","DOIUrl":"10.1016/j.engmic.2024.100165","url":null,"abstract":"<div><p>Tigecycline serves as a critical “final-resort” antibiotic for treating bacterial infections caused by multidrug-resistant bacteria for which treatment options are severely limited. The increasing prevalence of tigecycline resistance, particularly among Gram-negative bacteria, is a major concern. Various mechanisms have been identified as contributors to tigecycline resistance, including upregulation of nonspecific Resistance Nodulation Division (RND) efflux pumps due to mutations in transcriptional regulators, enzymatic modification of tigecycline by monooxygenase enzymes, and mutations affecting tigecycline binding sites. This review aims to consolidate our understanding of tigecycline resistance mechanisms in Gram-negative bacteria and offer insights and perspectives for further drug development.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 3","pages":"Article 100165"},"PeriodicalIF":0.0,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370324000274/pdfft?md5=2ad09fce1eeff0ac4a7f1759375e712e&pid=1-s2.0-S2667370324000274-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142075847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuai Li , Zhong Li , Guoqiang Zhang , Vlada B. Urlacher , Li Ma , Shengying Li
{"title":"Functional analysis of the whole CYPome and Fdxome of Streptomyces venezuelae ATCC 15439","authors":"Shuai Li , Zhong Li , Guoqiang Zhang , Vlada B. Urlacher , Li Ma , Shengying Li","doi":"10.1016/j.engmic.2024.100166","DOIUrl":"10.1016/j.engmic.2024.100166","url":null,"abstract":"<div><p>Cytochrome P450 enzymes (CYPs or P450s) and ferredoxins (Fdxs) are ubiquitously distributed in all domains of life. Bacterial P450s are capable of catalyzing various oxidative reactions with two electrons usually donated by Fdxs. Particularly in <em>Streptomyces</em>, there are abundant P450s that have exhibited outstanding biosynthetic capacity of bioactive metabolites and great potential for xenobiotic metabolisms. However, no systematic study has been conducted on physiological functions of the whole cytochrome P450 complement (CYPome) and ferredoxin complement (Fdxome) of any <em>Streptomyces</em> strain to date<em>,</em> leaving a significant knowledge gap in microbial functional genomics. Herein, we functionally analyze the whole CYPome and Fdxome of <em>Streptomyces venezuelae</em> ATCC 15439 by investigating groups of single and sequential P450 deletion mutants, single P450 overexpression mutants, and Fdx gene deletion or repression mutants. Construction of an unprecedented P450-null mutant strain indicates that none of P450 genes are essential for <em>S. venezuelae</em> in maintaining its survival and normal morphology. The non-housekeeping Fdx1 and housekeeping Fdx3 not only jointly support the cellular activity of the prototypic P450 enzyme PikC, but also play significant regulatory functions. These findings significantly advance the understandings of the native functionality of P450s and Fdxs as well as their cellular interactions.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 4","pages":"Article 100166"},"PeriodicalIF":0.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370324000286/pdfft?md5=a8270b363730ae79371412a1a3077ca0&pid=1-s2.0-S2667370324000286-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cellulolytic characterization of the rumen-isolated Acinetobacter pittii ROBY and design of a potential controlled-release drug delivery system","authors":"Ruken Sariboga , Omer Faruk Sarioglu","doi":"10.1016/j.engmic.2024.100164","DOIUrl":"10.1016/j.engmic.2024.100164","url":null,"abstract":"<div><p>A novel cellulolytic bacterial strain, ROBY, was isolated from a bovine rumen sample using the enrichment culture method. This isolate was found to be <em>Acinetobacter pittii</em>, with >99 % similarity according to 16S rRNA gene sequence analysis. The potential use of this strain in combination with doxorubicin (Dox)-integrated cellulose nanoparticles (Dox-CNPs) was evaluated as a proof-of-concept study for the further development of this approach as a novel controlled-release drug delivery strategy. The isolate can utilize CNPs as the sole carbon source for growth and degrade both Dox-CNPs and empty CNPs with high efficiency. Extracellular cellulases isolated from bacteria may also be used to trigger Dox release. The results also demonstrated that the release of Dox into the environment due to nanoparticle degradation in the samples incubated with Dox-CNPs significantly affected bacterial cell viability (∼75 % decrease), proving the release of Dox due to bacterial cellulase activity and suggesting the great potential of this approach for further development.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 3","pages":"Article 100164"},"PeriodicalIF":0.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370324000262/pdfft?md5=154741f24ca8241e1873123c2ea33593&pid=1-s2.0-S2667370324000262-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. C. Cunha-Ferreira , C. S. Vizzotto , T. D. Frederico , J. Peixoto , L. S Carvalho , M. R. Tótola , R. H. Krüger
{"title":"Impact of Paenibacillus elgii supernatant on screening bacterial strains with potential for biotechnological applications","authors":"I. C. Cunha-Ferreira , C. S. Vizzotto , T. D. Frederico , J. Peixoto , L. S Carvalho , M. R. Tótola , R. H. Krüger","doi":"10.1016/j.engmic.2024.100163","DOIUrl":"10.1016/j.engmic.2024.100163","url":null,"abstract":"<div><p>The biotechnological industry faces a crucial demand for novel bioactive compounds, particularly antimicrobial agents, to address the rising challenge of bacterial resistance to current available antibiotics. Traditional strategies for cultivating naturally occurring microorganisms often limit the discovery of novel antimicrobial producers. This study presents a protocol for targeted selection of bacterial strains using the supernatant of <em>Paenibacillus elgii</em>, which produces abundant signal molecules and antimicrobial peptides. Soil samples were inoculated in these enriched culture media to selectively cultivate bacteria resistant to the supernatant, indicating their potential to produce similar compounds. The bacterial strains isolated through this method were assessed for their antibacterial activity. In addition, the functional annotation of the genome of one of these strains revealed several gene clusters of biotechnological interest. This study highlights the effectiveness of using this approach for selective cultivation of microorganisms with potential for biotechnological applications.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 3","pages":"Article 100163"},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370324000250/pdfft?md5=3320eb58e754f7bdc2a2f5525731fd2b&pid=1-s2.0-S2667370324000250-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141846527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maofeng Wang , Cancan Wu , Nan Liu , Xiaoqiong Jiang , Hongjie Dong , Shubao Zhao , Chaonan Li , Sujuan Xu , Lichuan Gu
{"title":"Regulation of protein thermal stability and its potential application in the development of thermo-attenuated vaccines","authors":"Maofeng Wang , Cancan Wu , Nan Liu , Xiaoqiong Jiang , Hongjie Dong , Shubao Zhao , Chaonan Li , Sujuan Xu , Lichuan Gu","doi":"10.1016/j.engmic.2024.100162","DOIUrl":"10.1016/j.engmic.2024.100162","url":null,"abstract":"<div><p>The coronavirus disease 2019 (COVID-19) pandemic has highlighted the importance of developing novel vaccines. An ideal vaccine should trigger an intense immune reaction without causing significant side effects. In this study we found that substitution of tryptophan located in the cores of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protein structures with certain smaller amino acids resulted in variants with melting temperatures of 33–37 °C. An enzyme activity assay indicated that the proteolytic activity of the main proteinase (3CL<sup>pro</sup>) decreased sharply when the environmental temperature exceeded the melting temperature, implying that other protein variants may lose most of their functions under the same conditions. This finding suggests that a virus variant containing engineered proteins with melting temperatures of 33–37 °C may only be functional in the upper respiratory tract where the temperature is about 33 °C, but will be unable to invade internal organs, which maintain temperatures above 37 °C, thus making it possible to construct temperature-sensitive attenuated vaccines.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 3","pages":"Article 100162"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370324000249/pdfft?md5=678b37931cc38b0eac77aed4ffe7562b&pid=1-s2.0-S2667370324000249-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141961076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Senfeng Zhang , Shengsheng Ma , Feizuo Wang , Chunyi Hu
{"title":"Dual role of phage terminase in Salmonella enterica oxidative stress response","authors":"Senfeng Zhang , Shengsheng Ma , Feizuo Wang , Chunyi Hu","doi":"10.1016/j.engmic.2024.100156","DOIUrl":"10.1016/j.engmic.2024.100156","url":null,"abstract":"<div><p>The adaptive survival mechanisms of bacterial pathogens under host-induced stress are crucial for understanding pathogenesis. Recently, Uppalapati et al. revealed a unique dual function of the Gifsy-1 prophage terminase in <em>Salmonella enterica</em>: it acts as a transfer ribonuclease (tRNase) under oxidative stress. The Gifsy-1 prophage terminase targets and fragments tRNA<sup>Leu</sup> to halt translation and temporarily impairs bacterial growth when exposed to high levels of ROS generated by the host immune cells. This response not only preserves genomic integrity by facilitating DNA repair but also inhibits prophage mobilization, thereby aiding in bacterial survival within vertebrate hosts. This study highlights a novel intersection between phage biology and bacterial adaptive strategies.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 3","pages":"Article 100156"},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370324000158/pdfft?md5=b9a7cbe69de92bd35790678ac162c682&pid=1-s2.0-S2667370324000158-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141275040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei-feng Hu, Yan Wang, Xiao-ran Yue, Wei-wei Xue, Wei Hu, Xin-jing Yue, Yue-Zhong Li
{"title":"An upgraded Myxococcus xanthus chassis with enhanced growth characteristics for efficient genetic manipulation","authors":"Wei-feng Hu, Yan Wang, Xiao-ran Yue, Wei-wei Xue, Wei Hu, Xin-jing Yue, Yue-Zhong Li","doi":"10.1016/j.engmic.2024.100155","DOIUrl":"10.1016/j.engmic.2024.100155","url":null,"abstract":"<div><p>Myxobacteria are well known for multicellular social behaviors and valued for biosynthesis of natural products. Myxobacteria social behaviors such as clumping growth severely hamper strain cultivation and genetic manipulation. Using <em>Myxococcus xanthus</em> DK1622, we engineered Hu04, which is deficient in multicellular behavior and pigmentation. Hu04, while maintaining nutritional growth and a similar metabolic background, exhibits improved dispersed growth, streamlining operational procedures. It achieves high cell densities in culture and is promising for synthetic biology applications.</p></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"4 3","pages":"Article 100155"},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667370324000183/pdfft?md5=c2064724dd08cca2123f11fd56275bb0&pid=1-s2.0-S2667370324000183-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141279154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}