{"title":"Superoxide-mediated O2 activation drives radical cyclization in ergot alkaloid biosynthesis","authors":"Yuanyuan Jiang , Zhong Li , Shengying Li","doi":"10.1016/j.engmic.2025.100207","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional heme enzymes utilize iron–oxygen intermediates to activate substrates and drive reactions. Recently, Chen et al. discovered a novel NADPH-independent superoxide mechanism of heme catalase EasC, which facilitates an O<sub>2</sub>-dependent radical oxidative cyclization reaction during ergot alkaloid biosynthesis. This enzyme coordinates superoxide-mediated catalysis by connecting spatially distinct NADPH-binding pocket and heme pocket via a slender tunnel, offering a novel perspective on the catalytic mechanisms of heme enzymes in nature.</div></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"5 2","pages":"Article 100207"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667370325000219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional heme enzymes utilize iron–oxygen intermediates to activate substrates and drive reactions. Recently, Chen et al. discovered a novel NADPH-independent superoxide mechanism of heme catalase EasC, which facilitates an O2-dependent radical oxidative cyclization reaction during ergot alkaloid biosynthesis. This enzyme coordinates superoxide-mediated catalysis by connecting spatially distinct NADPH-binding pocket and heme pocket via a slender tunnel, offering a novel perspective on the catalytic mechanisms of heme enzymes in nature.