Jinxin Yan , Hui Zhang , Hongxu Zhang , Hairong Yu , Wenjia Tian , Mingyuan Liu , Weikang Sun , Leilei Guo , Xiaoxu Tan , Kaiyu Gao , Tianyi Jiang , Chuanjuan Lü , Qianjin Kang , Wensi Meng , Cuiqing Ma , Chao Gao , Ping Xu
{"title":"利用无辅助因子和无共底物的体外生物合成系统从ω-氨基酸生产二羧酸盐","authors":"Jinxin Yan , Hui Zhang , Hongxu Zhang , Hairong Yu , Wenjia Tian , Mingyuan Liu , Weikang Sun , Leilei Guo , Xiaoxu Tan , Kaiyu Gao , Tianyi Jiang , Chuanjuan Lü , Qianjin Kang , Wensi Meng , Cuiqing Ma , Chao Gao , Ping Xu","doi":"10.1016/j.engmic.2025.100210","DOIUrl":null,"url":null,"abstract":"<div><div>Dicarboxylates are valuable platform compounds with a broad range of applications. The <em>in vitro</em> biosynthetic system used to produce dicarboxylates from ω-amino acids via the natural pathway requires costly cofactors and co-substrates, which restricts its economic feasibility of use. In this study, we designed a cofactor- and co-substrate-free artificial pathway for the production of dicarboxylates from ω-amino acids. Only three enzymes (viz., amine oxidase from <em>Kluyveromyces marxianus</em> DMKU3-1042, xanthine oxidase from bovine milk, and catalase from <em>Aspergillus niger</em>) were required for dicarboxylate production. Succinate (0.79 g g<sup>-1</sup>), glutarate (0.83 g g<sup>-1</sup>), and adipate (0.77 g g<sup>-1</sup>) were produced in high yields from the corresponding ω-amino acids through the <em>in vitro</em> biosynthetic system with the artificial pathway. Glutarate could also be produced from <span>l</span>-lysine by further introducing <span>l</span>-lysine monooxygenase and 5-aminovaleramide amidohydrolase from <em>Pseudomonas putida</em> KT2440 into the <em>in vitro</em> biosynthetic system, with the cofactor- and co-substrate-free system achieving a product yield of 0.63 g g<sup>-1</sup>. Considering its desirable characteristics, this artificial pathway-based <em>in vitro</em> biosynthetic system may be a promising alternative for dicarboxylate production from biotechnologically produced ω-amino acids.</div></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"5 3","pages":"Article 100210"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production of dicarboxylates from ω-amino acids using a cofactor- and co-substrate-free in vitro biosynthetic system\",\"authors\":\"Jinxin Yan , Hui Zhang , Hongxu Zhang , Hairong Yu , Wenjia Tian , Mingyuan Liu , Weikang Sun , Leilei Guo , Xiaoxu Tan , Kaiyu Gao , Tianyi Jiang , Chuanjuan Lü , Qianjin Kang , Wensi Meng , Cuiqing Ma , Chao Gao , Ping Xu\",\"doi\":\"10.1016/j.engmic.2025.100210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dicarboxylates are valuable platform compounds with a broad range of applications. The <em>in vitro</em> biosynthetic system used to produce dicarboxylates from ω-amino acids via the natural pathway requires costly cofactors and co-substrates, which restricts its economic feasibility of use. In this study, we designed a cofactor- and co-substrate-free artificial pathway for the production of dicarboxylates from ω-amino acids. Only three enzymes (viz., amine oxidase from <em>Kluyveromyces marxianus</em> DMKU3-1042, xanthine oxidase from bovine milk, and catalase from <em>Aspergillus niger</em>) were required for dicarboxylate production. Succinate (0.79 g g<sup>-1</sup>), glutarate (0.83 g g<sup>-1</sup>), and adipate (0.77 g g<sup>-1</sup>) were produced in high yields from the corresponding ω-amino acids through the <em>in vitro</em> biosynthetic system with the artificial pathway. Glutarate could also be produced from <span>l</span>-lysine by further introducing <span>l</span>-lysine monooxygenase and 5-aminovaleramide amidohydrolase from <em>Pseudomonas putida</em> KT2440 into the <em>in vitro</em> biosynthetic system, with the cofactor- and co-substrate-free system achieving a product yield of 0.63 g g<sup>-1</sup>. Considering its desirable characteristics, this artificial pathway-based <em>in vitro</em> biosynthetic system may be a promising alternative for dicarboxylate production from biotechnologically produced ω-amino acids.</div></div>\",\"PeriodicalId\":100478,\"journal\":{\"name\":\"Engineering Microbiology\",\"volume\":\"5 3\",\"pages\":\"Article 100210\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667370325000244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667370325000244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Production of dicarboxylates from ω-amino acids using a cofactor- and co-substrate-free in vitro biosynthetic system
Dicarboxylates are valuable platform compounds with a broad range of applications. The in vitro biosynthetic system used to produce dicarboxylates from ω-amino acids via the natural pathway requires costly cofactors and co-substrates, which restricts its economic feasibility of use. In this study, we designed a cofactor- and co-substrate-free artificial pathway for the production of dicarboxylates from ω-amino acids. Only three enzymes (viz., amine oxidase from Kluyveromyces marxianus DMKU3-1042, xanthine oxidase from bovine milk, and catalase from Aspergillus niger) were required for dicarboxylate production. Succinate (0.79 g g-1), glutarate (0.83 g g-1), and adipate (0.77 g g-1) were produced in high yields from the corresponding ω-amino acids through the in vitro biosynthetic system with the artificial pathway. Glutarate could also be produced from l-lysine by further introducing l-lysine monooxygenase and 5-aminovaleramide amidohydrolase from Pseudomonas putida KT2440 into the in vitro biosynthetic system, with the cofactor- and co-substrate-free system achieving a product yield of 0.63 g g-1. Considering its desirable characteristics, this artificial pathway-based in vitro biosynthetic system may be a promising alternative for dicarboxylate production from biotechnologically produced ω-amino acids.