Engineering thermotolerant microbial strains via TrRCC1 overexpression for efficient bioethanol production

Tingting Chen, Xiao He, Xinyan Zhang, Tian Tian, Jian Cheng, Tingting Long, Yonghao Li
{"title":"Engineering thermotolerant microbial strains via TrRCC1 overexpression for efficient bioethanol production","authors":"Tingting Chen,&nbsp;Xiao He,&nbsp;Xinyan Zhang,&nbsp;Tian Tian,&nbsp;Jian Cheng,&nbsp;Tingting Long,&nbsp;Yonghao Li","doi":"10.1016/j.engmic.2025.100212","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient conversion of corn stover to bioethanol via simultaneous saccharification and fermentation (SSF) is a promising strategy for sustainable biofuel production. A major current barrier to this process is the limited thermotolerance of <em>Saccharomyces cerevisiae</em>, which hampers its performance under the high-temperature conditions required for efficient SSF. In this study, we identified <em>TrRCC1</em>, a gene from <em>Trichoderma reesei</em>, as a candidate for improving microbial stress resistance. Overexpression of <em>TrRCC1</em> in both <em>T. reesei</em> Rut C30 and <em>S. cerevisiae</em> BY4741 significantly enhanced thermotolerance. In <em>T. reesei</em> Rut C30, <em>TrRCC1</em> overexpression improved heat resistance and increased cellulase production by 2.5-fold compared to the wild-type strain. In <em>S. cerevisiae</em> BY4741, <em>TrRCC1</em> overexpression resulted in enhanced thermotolerance and a 21.8 % increase in ethanol production during SSF of corn stover. The ethanol concentration achieved in the SSF process with <em>TrRCC1</em>-overexpressing <em>S. cerevisiae</em> was 44.1 g/L, which was a notable improvement over control strain production. These findings highlight the potential of <em>TrRCC1</em> as a key gene for engineering microbial strains with improved stress resistance to enhance the efficiency of bioethanol production from lignocellulosic biomass.</div></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"5 2","pages":"Article 100212"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667370325000268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient conversion of corn stover to bioethanol via simultaneous saccharification and fermentation (SSF) is a promising strategy for sustainable biofuel production. A major current barrier to this process is the limited thermotolerance of Saccharomyces cerevisiae, which hampers its performance under the high-temperature conditions required for efficient SSF. In this study, we identified TrRCC1, a gene from Trichoderma reesei, as a candidate for improving microbial stress resistance. Overexpression of TrRCC1 in both T. reesei Rut C30 and S. cerevisiae BY4741 significantly enhanced thermotolerance. In T. reesei Rut C30, TrRCC1 overexpression improved heat resistance and increased cellulase production by 2.5-fold compared to the wild-type strain. In S. cerevisiae BY4741, TrRCC1 overexpression resulted in enhanced thermotolerance and a 21.8 % increase in ethanol production during SSF of corn stover. The ethanol concentration achieved in the SSF process with TrRCC1-overexpressing S. cerevisiae was 44.1 g/L, which was a notable improvement over control strain production. These findings highlight the potential of TrRCC1 as a key gene for engineering microbial strains with improved stress resistance to enhance the efficiency of bioethanol production from lignocellulosic biomass.
通过TrRCC1过表达工程耐热微生物菌株高效生产生物乙醇
通过同步糖化和发酵(SSF)将玉米秸秆高效转化为生物乙醇是一种有前途的可持续生物燃料生产策略。目前该工艺的主要障碍是酿酒酵母有限的耐热性,这阻碍了其在高效SSF所需的高温条件下的性能。在这项研究中,我们从里氏木霉(Trichoderma reesei)中鉴定出TrRCC1基因作为提高微生物抗逆性的候选基因。TrRCC1在T. reesei Rut C30和S. cerevisiae BY4741中过表达均能显著增强耐温性。在T. reesei Rut C30中,TrRCC1过表达提高了抗热性,纤维素酶产量比野生型提高了2.5倍。在酿酒酵母BY4741中,TrRCC1过表达导致玉米秸秆SSF期间耐温性增强,乙醇产量增加21.8%。过表达trrcc1的酿酒酵母在SSF过程中获得的乙醇浓度为44.1 g/L,比对照菌株产量有显著提高。这些发现突出了TrRCC1作为工程微生物菌株的关键基因的潜力,这些菌株具有更好的抗逆性,可以提高木质纤维素生物质生产生物乙醇的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信