{"title":"Cover Image, Volume 2, Number 4, November 2024","authors":"Keming Cheng, Kai Shen, Chuang Li, Daqian Guo, Hao Wang, Jiang Wu","doi":"10.1002/elt2.74","DOIUrl":"https://doi.org/10.1002/elt2.74","url":null,"abstract":"<p>Long wave infrared (LWIR) detectors have significant advantages in military and civilian detection of low light targets. This article (DOI: 10.1002/elt2.73) proposes a high-performance avalanche photodetector (APD) for LWIR detection by integrating band engineering with the unique properties of superlattice materials. By optimizing device structure and materials, enhanced responsivity and gain have been achieved, advancing the development of space-based infrared systems and deep space exploration.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.74","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of long-wavelength infrared InAs/InAsSb type-II superlattice avalanche photodetector with stepped grading layer","authors":"Keming Cheng, Kai Shen, Chuang Li, Daqian Guo, Hao Wang, Jiang Wu","doi":"10.1002/elt2.73","DOIUrl":"https://doi.org/10.1002/elt2.73","url":null,"abstract":"<p>Weak response in long-wavelength infrared (LWIR) detection has long been a perennial concern, significantly limiting the reliability of applications. Avalanche photodetectors (APDs) offer excellent responsivity but are plagued by high dark current during the multiplication process. Here, we propose a high-performance type-II superlattices (T2SLs) LWIR APD to address these issues. The low Auger recombination rate of the InAs/InAsSb T2SLs absorption layer is exploited to reduce the dark current initially. AlAsSb with a low <i>k</i> value is employed as the multiplication layer to suppress device noise while maintaining sufficient gain. To facilitate carrier transport, the conduction band discontinuity is optimized by inserting an InAs/AlSb T2SLs stepped grading layer between the absorption and multiplication layers. As a result, the device exhibits excellent photoresponse at 8.4 μm at 100 K and maintains a low dark current density of 5.48 × 10<sup>−2</sup> A/cm<sup>2</sup>. Specifically, it achieves a maximum gain of 366, a responsivity of 650 A/W, and a quantum efficiency of 26.28% under breakdown voltage. This design offers a promising solution for the advancement of LWIR detection.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.73","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vedaste Uwihoreye, Yushuo Hu, Guangyu Cao, Xing Zhang, Freddy E. Oropeza, Kelvin H. L. Zhang
{"title":"Recent progress on heteroepitaxial growth of single crystal diamond films","authors":"Vedaste Uwihoreye, Yushuo Hu, Guangyu Cao, Xing Zhang, Freddy E. Oropeza, Kelvin H. L. Zhang","doi":"10.1002/elt2.70","DOIUrl":"https://doi.org/10.1002/elt2.70","url":null,"abstract":"<p>Diamond is an ultimate semiconductor with exceptional physical and chemical properties, such as an ultra-wide bandgap, excellent carrier mobility, extreme thermal conductivity, and stability, making it highly desirable for various applications including power electronics, sensors, and optoelectronic devices. However, the challenge lies in growing the large-size and high-quality single-crystal diamond films, which are crucial for realizing the full potential of this wonder material. Heteroepitaxial growth has emerged as a promising approach to achieve single-crystal diamond wafers with large sizes of up to 3 inches and controlled electrical properties. This review provides an overview of the advancements in diamond heteroepitaxy using microwave plasma-assisted chemical vapor deposition, including the mechanism of heteroepitaxial growth, selection of substrates, film optimization, chemistry of defects, and doping. Moreover, recent progress on the device applications and perspectives is also discussed.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.70","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qing Liu, Zhiyong Zheng, Peixun Xiong, Chun Huang, Shengyang Huang, Baohuai Zhao, Yongan Wu, Yi Zhang, Bo-Kyong Kim, Xu Yu, Ho Seok Park
{"title":"Functional organic 7,7,8,8-tetracyanoquinodimethane artificial layers for the dendrite suppressed lithium metal anodes","authors":"Qing Liu, Zhiyong Zheng, Peixun Xiong, Chun Huang, Shengyang Huang, Baohuai Zhao, Yongan Wu, Yi Zhang, Bo-Kyong Kim, Xu Yu, Ho Seok Park","doi":"10.1002/elt2.72","DOIUrl":"https://doi.org/10.1002/elt2.72","url":null,"abstract":"<p>The large-scale industrialization of lithium metal (Li), as a potential anode for a high energy density energy storage system, has been hindered by dendrite growth. The construction of an artificial solid electrolyte interphase layer featuring high ionic and low electronic conductivity has been verified to be a high-performance strategy to confine the dendrite growth and promote the Li anode stability. Therefore, a functional organic protective layer is homogeneously deposited on the Li anode surface via an in situ chemical reaction between tetracyanoquinodimethane (TCNQ) and Li. The as-synthesized Li<sub>n</sub>-TCNQ organic film could efficiently trap non-uniform Li deposition and restrain dendrite propagation. Particularly, an asymmetric M-TCNQ-Li|Cu cell with the Li<sub>n</sub>-TCNQ layer breezed through a high Coulombic efficiency of 91.15% after 100 cycles at 1.0 mA cm<sup>−2</sup>. The M-TCNQ-Li|NCM622 cell delivered a high capacity of 143.40 mAh g<sup>−1</sup> at 0.2 C and maintained a good cyclic stability of 110.44 mAh g<sup>−1</sup> after 160 cycles. The analysis results of spectroscopic tests further demonstrate that the Li<sub>n</sub>-TCNQ with the enhanced absorption energy is conducive to lithiophilicity and decreases the overpotential of Li deposition.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.72","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142753987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessing electronic structure modulation strategies toward the development of low-cost oxygen evolution reaction catalysts","authors":"Zhen Zhang, Shaobo Han, Cheng Li, Chao Cai, Meng Danny Gu","doi":"10.1002/elt2.65","DOIUrl":"https://doi.org/10.1002/elt2.65","url":null,"abstract":"<p>Oxygen evolution reactions (OER) are critical to electrochemical synthesis reactions, including hydrogen production and organic hydrogenation. However, the high cost of existing OER catalysts (primarily Ir/Ru and its derived oxides) limits their practical application for electrochemical synthesis. To develop a low-cost, high-efficiency alternative, we need a deeper understanding of both the mechanisms that drive OER and the relationship between the catalyst's electronic structure and active sites. Here, we summarized recent developments of catalysts, especially focusing on the electronic structure modulation strategies and their subsequent activity enhancement. Most importantly, we pointed out the study directions for further work.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.65","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Image, Volume 2, Number 3, August 2024","authors":"Hui Xie, Jianyou Yu, Yuchen Fang, Zhijun Wang, Shihe Yang, Zheng Xing","doi":"10.1002/elt2.66","DOIUrl":"https://doi.org/10.1002/elt2.66","url":null,"abstract":"<p>Photocathodic protection has emerged as an eco-friendly and energy-saving technology for alleviating the corrosion of underwater metallic infrastructures. In a photocathodic protection system built from single-domain ferroelectric PbTiO<sub>3</sub> nanoplates, the aligned depolarization fields of individual nanoplates provide a “highway” for the photogenerated charges so that the electrons are guided to unidirectionally flow to the protected metal. The cover image (DOI: 10.1002/elt2.51) depicts the schematic diagram of the well-aligned depolarization fields of the PbTiO<sub>3</sub> nanoplates, the induced directional transport “highway” of electrons and holes, and the photogenerated electrons traveling to metallic structures (such as bridges and ships) for anti-corrosion purposes.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.66","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Image, Volume 2, Number 3, August 2024","authors":"Guo Huang, Yujin Huang, Asad Ali, Zhijie Chen, Pei Kang Shen, Bing-Jie Ni, Jinliang Zhu","doi":"10.1002/elt2.68","DOIUrl":"https://doi.org/10.1002/elt2.68","url":null,"abstract":"<p>Designing cost-effective electrocatalysts for hydrogen evolution reaction (HER) is of paramount importance. Leveraging the benefit of heterostructural materials, a mixed-phase cobalt phosphide (CoP-Co<sub>2</sub>P) has been synthesized through a simple phosphorization method (DOI: 10.1002/elt2.58). This heterostructure catalyst, with its metallic state, high electron density near the Fermi level, and excellent conductivity, displays outstanding activity and exceptional durability for HER in both alkaline and neutral environments. Moreover, it shows remarkable HER catalytic efficiency in alkaline seawater, highlighting its potential for practical applications in hydrogen production.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.68","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover Image, Volume 2, Number 3, August 2024","authors":"Ziwei Zhao, Xiaowu Gao, Hansong Zhang, Keran Jiao, Pengfei Song, Yumin Zhang, Yongjie Wang, Jiaqi Zhu","doi":"10.1002/elt2.67","DOIUrl":"https://doi.org/10.1002/elt2.67","url":null,"abstract":"<p>Energy and survival materials are crucial for humanity. The cover image (DOI: 10.1002/elt2.45), set against the backdrop of the extraterrestrial environment, shows that diamond can effectively resist extreme environments and can convert CO<sub>2</sub> into other useful carbon products through various modification methods in harsh environments. It demonstrates that diamond based catalysts are promising candidates for application in extreme environments.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.67","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-sensing piezoresistive aerospace composites based on CNTs and 2D material coated fabric sensors","authors":"Tayyab Khan, Rehan Umer","doi":"10.1002/elt2.61","DOIUrl":"https://doi.org/10.1002/elt2.61","url":null,"abstract":"<p>The ongoing fourth industrial revolution, also known as “Industry 4.0” is the driving force behind the digitalization of various manufacturing systems by incorporating smart autonomous systems, the Internet of Things (IoT), robotics, and artificial intelligence. In terms of aerospace composites, comprehensive research has been carried out in the past decade or so to manufacture smart and self-sensing fiber-reinforced polymer composites capable of monitoring their own health states. This review focuses on recent developments in smart, self-sensing fiber-reinforced composites incorporating nanomaterial-coated piezoresistive fabric sensors such as carbon nanotubes (CNTs), graphene, and MXene. A comprehensive overview of process monitoring involving the complete resin infusion cycle, such as compaction response, resin flow monitoring, pressure variations within the mold, process-induced defects monitoring, and cure/post-cure monitoring, has been provided. The post-manufacturing structuring health monitoring (SHM) of composites has also been discussed in detail. An overview of the associated challenges of these sensors, such as manufacturability, robustness, conductivity/piezoresistivity calibration, and the effect on structural integrity, is presented. Finally, future insights into the application of these sensors in the physical and cyber domains for smart factories of the future have also been discussed.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.61","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}