Oxygen Vacancy Engineering of Metal Oxide Materials for Photoelectrochemical Water Splitting

Electron Pub Date : 2025-08-22 DOI:10.1002/elt2.70011
Xiao-Fan Yang, Guang-Ping Yi, Peng-Fei Lv, Si-Jie Wen, Yi-Ping Zhao, Zhao Jing, Qiang Wang, Bing Li, Peng-Yi Tang
{"title":"Oxygen Vacancy Engineering of Metal Oxide Materials for Photoelectrochemical Water Splitting","authors":"Xiao-Fan Yang,&nbsp;Guang-Ping Yi,&nbsp;Peng-Fei Lv,&nbsp;Si-Jie Wen,&nbsp;Yi-Ping Zhao,&nbsp;Zhao Jing,&nbsp;Qiang Wang,&nbsp;Bing Li,&nbsp;Peng-Yi Tang","doi":"10.1002/elt2.70011","DOIUrl":null,"url":null,"abstract":"<p>Photoelectrochemical (PEC) water splitting presents a promising route for sustainable hydrogen production, yet the efficiency of metal oxide photoanodes remains limited by suboptimal light absorption, charge carrier recombination, and sluggish surface reaction kinetics. This review critically examines the strategic engineering of oxygen vacancies (OVs) as a powerful tool for overcoming these intrinsic limitations. We systematically analyze established methodologies for the deliberate introduction and modulation of OVs in metal oxides, including techniques such as the hydrothermal method, thermal treatment, chemical reduction, plasma processing, elemental doping, and microwave heating. Furthermore, we critically evaluate the applicability, strengths, and limitations of key characterization techniques for detecting and quantifying OVs. Crucially, the review delves into the profound mechanistic impacts of OVs on the PEC process chain: Their roles in tailoring electronic band structures to alter the photoelectrochemical properties of metal oxide photoanodes, thereby enhancing visible light absorption, acting as shallow donors to improve charge carrier density, functioning as electron traps to suppress bulk recombination, and modifying surface states to accelerate the oxygen evolution reaction. We also present detailed case studies focusing on five prominent photoanode materials: TiO<sub>2</sub>, α-Fe<sub>2</sub>O<sub>3</sub>, BiVO<sub>4</sub>, WO<sub>3</sub>, and ZnFe<sub>2</sub>O<sub>4</sub>. This review elucidates the specific roles and operational principles of OVs within these materials and summarizes the intrinsic relationship among OV generation, characterization, and functional enhancement, providing valuable insights for the rational design of OV-engineered photoanodes toward efficient solar fuel production.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.70011","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elt2.70011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Photoelectrochemical (PEC) water splitting presents a promising route for sustainable hydrogen production, yet the efficiency of metal oxide photoanodes remains limited by suboptimal light absorption, charge carrier recombination, and sluggish surface reaction kinetics. This review critically examines the strategic engineering of oxygen vacancies (OVs) as a powerful tool for overcoming these intrinsic limitations. We systematically analyze established methodologies for the deliberate introduction and modulation of OVs in metal oxides, including techniques such as the hydrothermal method, thermal treatment, chemical reduction, plasma processing, elemental doping, and microwave heating. Furthermore, we critically evaluate the applicability, strengths, and limitations of key characterization techniques for detecting and quantifying OVs. Crucially, the review delves into the profound mechanistic impacts of OVs on the PEC process chain: Their roles in tailoring electronic band structures to alter the photoelectrochemical properties of metal oxide photoanodes, thereby enhancing visible light absorption, acting as shallow donors to improve charge carrier density, functioning as electron traps to suppress bulk recombination, and modifying surface states to accelerate the oxygen evolution reaction. We also present detailed case studies focusing on five prominent photoanode materials: TiO2, α-Fe2O3, BiVO4, WO3, and ZnFe2O4. This review elucidates the specific roles and operational principles of OVs within these materials and summarizes the intrinsic relationship among OV generation, characterization, and functional enhancement, providing valuable insights for the rational design of OV-engineered photoanodes toward efficient solar fuel production.

Abstract Image

光电化学水分解金属氧化物材料的氧空位工程
光电化学(PEC)水分解是一种很有前途的可持续制氢途径,但金属氧化物光阳极的效率仍然受到不理想的光吸收、载流子重组和缓慢的表面反应动力学的限制。这篇综述批判性地探讨了氧空位(OVs)的战略工程作为克服这些内在局限性的有力工具。我们系统地分析了在金属氧化物中引入和调制OVs的现有方法,包括水热法、热处理、化学还原、等离子体处理、元素掺杂和微波加热等技术。此外,我们批判性地评估了用于检测和量化OVs的关键表征技术的适用性、优势和局限性。至关重要的是,该综述深入研究了OVs对PEC过程链的深刻机制影响:它们在调整电子带结构以改变金属氧化物光阳极的光电化学性质方面的作用,从而增强可见光吸收,作为浅供体以提高电荷载流子密度,作为电子陷阱以抑制体重组,以及改变表面状态以加速析氧反应。我们还详细介绍了五种主要的光阳极材料:TiO2, α-Fe2O3, BiVO4, WO3和ZnFe2O4。本文阐述了OVs在这些材料中的具体作用和工作原理,并总结了OVs产生、表征和功能增强之间的内在关系,为合理设计OVs工程光阳极以实现高效太阳能燃料生产提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信