低锂梯度聚合物电解质阴离子空位对静电微环境的多级调控

Electron Pub Date : 2025-07-28 DOI:10.1002/elt2.70010
Yunfa Dong, Yuhui He, Botao Yuan, Xingyu Ding, Shijie Zhong, Jianze Feng, Yupei Han, Zhezhi Liu, Lin Xu, Ke Feng, Jiecai Han, Haichao Cheng, Chade Lv, Weidong He
{"title":"低锂梯度聚合物电解质阴离子空位对静电微环境的多级调控","authors":"Yunfa Dong,&nbsp;Yuhui He,&nbsp;Botao Yuan,&nbsp;Xingyu Ding,&nbsp;Shijie Zhong,&nbsp;Jianze Feng,&nbsp;Yupei Han,&nbsp;Zhezhi Liu,&nbsp;Lin Xu,&nbsp;Ke Feng,&nbsp;Jiecai Han,&nbsp;Haichao Cheng,&nbsp;Chade Lv,&nbsp;Weidong He","doi":"10.1002/elt2.70010","DOIUrl":null,"url":null,"abstract":"<p>Solid-state lithium-metal batteries based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVH) are frequently proposed to address the detrimental safety issue of conventional lithium-ion batteries by eliminating the use of flammable solvents, but still face a key challenge: low capacity and sluggish charge/discharge rate due to the intrinsic large-gradient Li<sup>+</sup> distribution across the ionically-inert PVH matrix. Herein, Te vacancies in form of Bi<sub>2</sub>Te<sub>3−x</sub> are proposed to polarize the PVH unit to realize efficient decoupling of lithium salts at the atomic level in PVH-based solid polymeric electrolyte. Te vacancies in the PVH electrolyte doped with Bi<sub>2</sub>Te<sub>3−x</sub> (PVBT) induce a high-throughput and homogenous Li<sup>+</sup> flow within the PVH matrices and near the Li metal. Theoretical calculations show that Te vacancies own high adsorption energy with bis(trifluoromethanesulfonyl)imide anions (TFSI<sup>−</sup>), repulsive effect on Li<sup>+</sup>, and localized electron distribution, giving rise to a lithium-ion concentration gradient of 30 mol m<sup>−3</sup>, the smallest among the PVH-based inorganic/organic composite electrolytes. Consequently, the polarized electrolyte owns an unprecedented high-rate battery capacity of 114 mAh g<sup>−1</sup> at ∼700 mA g<sup>−1</sup> and also superior capacity performances with a cathode loading of 12 mg cm<sup>−2</sup>, outperforming the state-of-art PVH-based inorganic/organic composite electrolytes in Li||LiFePO<sub>4</sub> battery. The work demonstrates an efficient strategy for achieving fast Li<sup>+</sup> diffusion dynamics across polymeric matrices of classic solid-state electrolytes.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.70010","citationCount":"0","resultStr":"{\"title\":\"Multi-Level Regulation of Electrostatic Microenvironment With Anion Vacancies for Low-Lithium-Gradient Polymer Electrolyte\",\"authors\":\"Yunfa Dong,&nbsp;Yuhui He,&nbsp;Botao Yuan,&nbsp;Xingyu Ding,&nbsp;Shijie Zhong,&nbsp;Jianze Feng,&nbsp;Yupei Han,&nbsp;Zhezhi Liu,&nbsp;Lin Xu,&nbsp;Ke Feng,&nbsp;Jiecai Han,&nbsp;Haichao Cheng,&nbsp;Chade Lv,&nbsp;Weidong He\",\"doi\":\"10.1002/elt2.70010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solid-state lithium-metal batteries based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVH) are frequently proposed to address the detrimental safety issue of conventional lithium-ion batteries by eliminating the use of flammable solvents, but still face a key challenge: low capacity and sluggish charge/discharge rate due to the intrinsic large-gradient Li<sup>+</sup> distribution across the ionically-inert PVH matrix. Herein, Te vacancies in form of Bi<sub>2</sub>Te<sub>3−x</sub> are proposed to polarize the PVH unit to realize efficient decoupling of lithium salts at the atomic level in PVH-based solid polymeric electrolyte. Te vacancies in the PVH electrolyte doped with Bi<sub>2</sub>Te<sub>3−x</sub> (PVBT) induce a high-throughput and homogenous Li<sup>+</sup> flow within the PVH matrices and near the Li metal. Theoretical calculations show that Te vacancies own high adsorption energy with bis(trifluoromethanesulfonyl)imide anions (TFSI<sup>−</sup>), repulsive effect on Li<sup>+</sup>, and localized electron distribution, giving rise to a lithium-ion concentration gradient of 30 mol m<sup>−3</sup>, the smallest among the PVH-based inorganic/organic composite electrolytes. Consequently, the polarized electrolyte owns an unprecedented high-rate battery capacity of 114 mAh g<sup>−1</sup> at ∼700 mA g<sup>−1</sup> and also superior capacity performances with a cathode loading of 12 mg cm<sup>−2</sup>, outperforming the state-of-art PVH-based inorganic/organic composite electrolytes in Li||LiFePO<sub>4</sub> battery. The work demonstrates an efficient strategy for achieving fast Li<sup>+</sup> diffusion dynamics across polymeric matrices of classic solid-state electrolytes.</p>\",\"PeriodicalId\":100403,\"journal\":{\"name\":\"Electron\",\"volume\":\"3 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.70010\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elt2.70010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elt2.70010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于聚偏氟乙烯-共六氟丙烯(PVH)的固态锂金属电池经常被提出,通过消除易燃溶剂的使用来解决传统锂离子电池的有害安全问题,但仍然面临一个关键挑战:由于离子惰性PVH基体上固有的大梯度Li+分布,容量低,充放电速率缓慢。本文提出以Bi2Te3−x形式的空位来极化PVH单元,以实现PVH基固体聚合物电解质中锂盐在原子水平上的有效解耦。在掺Bi2Te3−x (PVBT)的PVH电解质中,空位在PVH基体内和靠近Li金属的地方诱导了高通量和均匀的Li+流动。理论计算表明,该空位对双(三氟甲磺酰基)亚胺阴离子(TFSI−)具有较高的吸附能,对Li+具有排斥力,且电子局域分布,导致锂离子浓度梯度为30 mol m−3,是pvh基无机/有机复合电解质中最小的。因此,极化电解质在~ 700 mA g−1时具有前所未有的114 mAh g−1的高倍率电池容量,并且在阴极负载为12 mg cm−2时具有优越的容量性能,优于Li b| LiFePO4电池中最先进的pvh基无机/有机复合电解质。这项工作证明了一种有效的策略,可以实现Li+在经典固态电解质聚合物基体上的快速扩散动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multi-Level Regulation of Electrostatic Microenvironment With Anion Vacancies for Low-Lithium-Gradient Polymer Electrolyte

Multi-Level Regulation of Electrostatic Microenvironment With Anion Vacancies for Low-Lithium-Gradient Polymer Electrolyte

Solid-state lithium-metal batteries based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVH) are frequently proposed to address the detrimental safety issue of conventional lithium-ion batteries by eliminating the use of flammable solvents, but still face a key challenge: low capacity and sluggish charge/discharge rate due to the intrinsic large-gradient Li+ distribution across the ionically-inert PVH matrix. Herein, Te vacancies in form of Bi2Te3−x are proposed to polarize the PVH unit to realize efficient decoupling of lithium salts at the atomic level in PVH-based solid polymeric electrolyte. Te vacancies in the PVH electrolyte doped with Bi2Te3−x (PVBT) induce a high-throughput and homogenous Li+ flow within the PVH matrices and near the Li metal. Theoretical calculations show that Te vacancies own high adsorption energy with bis(trifluoromethanesulfonyl)imide anions (TFSI), repulsive effect on Li+, and localized electron distribution, giving rise to a lithium-ion concentration gradient of 30 mol m−3, the smallest among the PVH-based inorganic/organic composite electrolytes. Consequently, the polarized electrolyte owns an unprecedented high-rate battery capacity of 114 mAh g−1 at ∼700 mA g−1 and also superior capacity performances with a cathode loading of 12 mg cm−2, outperforming the state-of-art PVH-based inorganic/organic composite electrolytes in Li||LiFePO4 battery. The work demonstrates an efficient strategy for achieving fast Li+ diffusion dynamics across polymeric matrices of classic solid-state electrolytes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信