Earthquake Research Advances最新文献

筛选
英文 中文
The seismicity in the middle section of the Altyn Tagh Fault system revealed by a dense nodal seismic array 密集节点地震阵列揭示的阿尔廷塔格断层系统中段的地震活动性
Earthquake Research Advances Pub Date : 2024-07-01 DOI: 10.1016/j.eqrea.2024.100308
{"title":"The seismicity in the middle section of the Altyn Tagh Fault system revealed by a dense nodal seismic array","authors":"","doi":"10.1016/j.eqrea.2024.100308","DOIUrl":"10.1016/j.eqrea.2024.100308","url":null,"abstract":"<div><p>The left-lateral Altyn Tagh Fault (ATF) system is the northern boundary of the Qinghai-Xizang Plateau, separating the Tarim Basin and the Qaidam Basin. The middle section of ATF has not recorded any large earthquakes since 1598 AD, so the potential seismic hazard is unclear. We develope an earthquake catalog using continuous waveform data recorded by the Tarim-Altyn-Qaidam dense nodal seismic array from September 17 to November 23, 2021 in the middle section of ATF. With the machine learning-based picker, phase association, location, match and locate workflow, we detecte 233 earthquakes with <em>M</em><sub>L</sub> -1–3, far more than 6 earthquakes in the routine catalog. Combining with focal mechanism solutions and the local fault structure, we find that seismic events are clustered along the ATF with strike-slip focal mechanisms and on the southern secondary faults with thrusting focal mechanisms. This overall seismic activity in the middle section of the ATF might be due to the northeastward transpressional motion of the Qinghai-Xizang Plateau block at the western margin of the Qaidam Basin.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 3","pages":"Article 100308"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467024000344/pdfft?md5=46e6ce19ac1c6d360e367ea57cdc2c60&pid=1-s2.0-S2772467024000344-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140794432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum regarding previously published articles 关于以前发表的文章的勘误
Earthquake Research Advances Pub Date : 2024-07-01 DOI: 10.1016/j.eqrea.2024.100293
{"title":"Erratum regarding previously published articles","authors":"","doi":"10.1016/j.eqrea.2024.100293","DOIUrl":"10.1016/j.eqrea.2024.100293","url":null,"abstract":"","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 3","pages":"Article 100293"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467024000198/pdfft?md5=e095e29e19d4f71c9be66ffc56a9e054&pid=1-s2.0-S2772467024000198-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141961288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial distribution characteristics and influence factor analysis of landslides —case study of the Hanwang area in Qinba Mountains 滑坡空间分布特征及影响因素分析--秦巴山区汉旺地区案例研究
Earthquake Research Advances Pub Date : 2024-07-01 DOI: 10.1016/j.eqrea.2024.100275
{"title":"Spatial distribution characteristics and influence factor analysis of landslides —case study of the Hanwang area in Qinba Mountains","authors":"","doi":"10.1016/j.eqrea.2024.100275","DOIUrl":"10.1016/j.eqrea.2024.100275","url":null,"abstract":"<div><p>The geological hazards of landslides in Hanwang Town, Ziyang County, Ankang City, Shaanxi Province, have emerged. Yet, the current understanding of the spatial distribution characteristics and influencing factors of landslides in this area remains unclear. Combining the results of remote sensing interpretation and field investigation, seven influencing factors, namely, elevation, slope direction, slope gradient, distance from rivers, distance from faults, engineering geologic lithology, and distance from roads, are selected for the study. The distribution characteristics of landslides in each influencing factor and the influence of the resolution of the Digital Elevation Model (DEM) on the results are statistically and analytically analyzed. Furthermore, two high-risk landslides within the study area were subjected to comprehensive analysis, integrating the findings from drilling and other field investigations in order to examine their deformation mechanisms. Based on this analysis, the following conclusions were derived: (1) 34 landslides in the study area, mainly small earth landslides, with a distribution density of 0.42/km<sup>2</sup>, threatening 414 people and property of about 55.87 million Yuan. (2)The landslides in the study area easily occur in the &lt;400 ​m elevation range; the landslides are developed in all slope directions, the gradient is mainly concentrated in the range of 10°–40°, the distribution density of the landslides is higher in the closer distance from the river and the faults (0–200 ​m), the landslide-prone strata are mainly the softer and weaker metamorphic rocks, and the landslides are mainly around roads. (3) The resolution of the DEM should be selected based on the specific conditions of the study area, the requirements of the investigation, and the scale of the landslide. Opting for an appropriate DEM resolution is advantageous for understanding the patterns of landslides and conducting risk assessments in the region. (4) The Zhengjiabian landslide is a traction Landslide. The landslide body is a binary structure of gravel soil and slate weathering layer, and the damage process can be divided into three stages:①damage to the leading edge and stress release, ②continuous creep and cracking, ③rainfall infiltration and damage. The predominant slope material in the Brickyard landslide comprises clay, and the landslide is triggered by a combination of the traction effect resulting from the excavation at the slope's base and the nudging effect caused by the stacking load of the brick factory. Additionally, the Brickyard landslide exhibits persistent creep deformation. The study results provide a scientific basis for disaster prevention and mitigation in the Hanwang Township area.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 3","pages":"Article 100275"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467024000010/pdfft?md5=df642adb4c866ecfbfcf412c2a5e5af5&pid=1-s2.0-S2772467024000010-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139392612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interseismic slip distribution and locking characteristics of the mid-southern segment of the Tanlu fault zone 郯庐断层带中段南侧的震间滑移分布和锁定特征
Earthquake Research Advances Pub Date : 2024-07-01 DOI: 10.1016/j.eqrea.2024.100307
{"title":"Interseismic slip distribution and locking characteristics of the mid-southern segment of the Tanlu fault zone","authors":"","doi":"10.1016/j.eqrea.2024.100307","DOIUrl":"10.1016/j.eqrea.2024.100307","url":null,"abstract":"<div><p>We employ the block negative dislocation model to invert the distribution of fault coupling and slip rate deficit on the different segments of the Tanlu (Tancheng-Lujiang) fault zone, according to the GPS horizontal velocity field from 1991 to 2007 (the first phase) and 2013 to 2018 (the second phase). By comparing the deformation characteristics results, we discuss the relationship between the deformation characteristics with the M earthquake in Japan. The results showed that the fault coupling rate of the northern section of Tancheng in the second phase reduced compared with that in the first phase. However, the results of the two phases showed that the northern section of Juxian still has a high coupling rate, a deep blocking depth, and a dextral compressive deficit, which is the enrapture section of the 1668 Tancheng earthquake. At the same time, the area strain results show that the strain rate of the central and eastern regions of the second phase is obviously enhanced compared with that of the first phase. The occurrence of the great earthquake in Japan has played a specific role in alleviating the strain accumulation in the middle and south sections of the Tanlu fault zone. The results of the maximum shear strain show that the shear strain in the middle section of the Tanlu fault zone in the second phase is weaker than that in the first phase, and the maximum shear strain in the southern section is stronger than that in the first phase. The fault coupling coefficient of the south Sihong to Jiashan section is high, and it is also the unruptured section of historical earthquakes. At the same time, small earthquakes in this area are not active and accumulate stress easily, so the future earthquake risk deserves attention.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 3","pages":"Article 100307"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467024000332/pdfft?md5=fda8dd5b0f4c2e340a8265f436ab6344&pid=1-s2.0-S2772467024000332-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140407090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The 2024 Mj 7.6 Noto Peninsula, Japan earthquake caused by the fluid flow in the crust 地壳流体流动引发的 2024 年日本能登半岛 Mj7.6 级地震
Earthquake Research Advances Pub Date : 2024-07-01 DOI: 10.1016/j.eqrea.2024.100292
{"title":"The 2024 Mj 7.6 Noto Peninsula, Japan earthquake caused by the fluid flow in the crust","authors":"","doi":"10.1016/j.eqrea.2024.100292","DOIUrl":"10.1016/j.eqrea.2024.100292","url":null,"abstract":"<div><p>On January 1, 2024 ​at 16:10:09 JST, an <em>M</em><sub>j</sub> 7.6 earthquake struck the Noto Peninsula in the southern part of the Sea of Japan. This location has been experiencing an earthquake swarm for more than three years. Here, we provide an overview of this earthquake, focusing on the slip distribution of the mainshock and its relationship with the preceding swarm. We also reexamined the source areas of other large earthquakes that occurred around the Sea of Japan in the past and compared them with the Matsushiro earthquake swarm in central Japan from 1964 to 1968. The difference between the Matsushiro earthquake swarm and the Noto earthquake swarm is the surrounding stress field. The Matsushiro earthquake swarm was a strike-slip stress field, so the cracks in the crust were oriented vertically. This allowed fluids seeped from the depths to rise and flow out to the surface. On the other hand, the Noto area was a reverse fault stress field. Therefore, the cracks in the earth's crust were oriented horizontally. Fluids flowing underground in deep areas could not rise and spread over a wide area in the horizontal plane. This may have caused a large amount of fluid to accumulate underground, triggering a large earthquake. Although our proposed mechanism does not take into account other complex geological conditions into consideration, it may provide a simple way to explain why the Noto swarm is followed by a large earthquake while other swarms are not.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 3","pages":"Article 100292"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467024000186/pdfft?md5=10befa2ebdac0c54e738a2d940c10ba8&pid=1-s2.0-S2772467024000186-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139966491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and hazard analysis of landslides triggered by earthquakes and rainfall 地震和降雨引发的山体滑坡的识别和危害分析
Earthquake Research Advances Pub Date : 2024-07-01 DOI: 10.1016/j.eqrea.2023.100272
{"title":"Identification and hazard analysis of landslides triggered by earthquakes and rainfall","authors":"","doi":"10.1016/j.eqrea.2023.100272","DOIUrl":"10.1016/j.eqrea.2023.100272","url":null,"abstract":"<div><p>This study aims to utilize the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technique and Google Earth optical remote sensing images to analyze the area within 20 ​km around the epicenter of a <em>M</em> 3.9, earthquake that occurred in Tanchang County, Gansu Province, on December 28, 2020. The objective is to identify potential earthquake-induced landslides, assess their scale, and determine their impact range. The study results reveal the successful identification of two potential landslides in the 20 ​km radius around the epicenter. Through time-series deformation analysis, it was observed that these potential landslides were significantly influenced by both the earthquake and rainfall. Further estimation of these potential landslides indicates maximum depths of 7.4 ​m and 14.1 ​m for the failure surfaces, with volumes of 9.02 ​× ​10<sup>4</sup> ​m<sup>3</sup> and 25.5 ​× ​10<sup>4</sup> ​m<sup>3</sup>, respectively. Finally, based on the simulation analysis of Massflow software, the maximum thickness of soil accumulation in the final accumulation area after sliding of the potential landslide in Shangyaai is 12 ​m, the area of the final accumulation area is 1.75 ​× ​10<sup>4</sup> ​m<sup>2</sup>, and the farthest movement distance is 1124 ​m. The maximum thickness of soil accumulation in the final accumulation area after sliding of the potential landslide in Wangshancun is 8 ​m, the area of the final accumulation area is 7.89 ​× ​10<sup>4</sup> ​m<sup>2</sup>, and the farthest movement distance is 742 ​m.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 3","pages":"Article 100272"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467023000696/pdfft?md5=ba6a8cdea7cfdae2bd3eb15fba341bad&pid=1-s2.0-S2772467023000696-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139188018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of oblique photogrammetry technique in geological hazard identification and decision management 斜摄影测量技术在地质灾害识别和决策管理中的应用
Earthquake Research Advances Pub Date : 2024-07-01 DOI: 10.1016/j.eqrea.2023.100269
{"title":"Application of oblique photogrammetry technique in geological hazard identification and decision management","authors":"","doi":"10.1016/j.eqrea.2023.100269","DOIUrl":"10.1016/j.eqrea.2023.100269","url":null,"abstract":"<div><p>With the continuous development of the oblique photography technique, it has been used more and more widely in the field of geological disasters. It can quickly obtain the three-dimensional (3D) real scene model of dangerous mountainous areas under the premise of ensuring the safety of personnel while restoring the real geographic information as much as possible. However, geological disaster areas are often accompanied by many adverse factors such as cliffs and dense vegetation. Based on this, the paper introduced the flight line design of oblique photogrammetry, analyzed the multi-platform data fusion processing, studied the multi-period data dynamic evaluation technology and proposed the application methods of data acquisition, early warning, disaster assessment and decision management suitable for geological disaster identification through the analysis of actual cases, which will help geologists to plan and control geological work more scientifically and rationally, improve work efficiency and reduce the potential personnel safety hazards in the process of geological survey, to offer technical support to the application of oblique photogrammetry in geological disaster identification and decision making and provide the scientific basis for personal and property safety protection and later-stage geological disaster management in disaster areas.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 3","pages":"Article 100269"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467023000660/pdfft?md5=518915cb7c92c3ca5657f8793106ba0b&pid=1-s2.0-S2772467023000660-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135515783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid rupture characterization for the 2023 MS 6.2 Jishishan earthquake 2023 年吉祥山 6.2 级地震的运动断裂
Earthquake Research Advances Pub Date : 2024-04-01 DOI: 10.1016/j.eqrea.2024.100288
Xiongwei Tang , Rumeng Guo , Yijun Zhang , Kun Dai , Jianqiao Xu , Jiangcun Zhou , Mingqiang Hou , Heping Sun
{"title":"Rapid rupture characterization for the 2023 MS 6.2 Jishishan earthquake","authors":"Xiongwei Tang ,&nbsp;Rumeng Guo ,&nbsp;Yijun Zhang ,&nbsp;Kun Dai ,&nbsp;Jianqiao Xu ,&nbsp;Jiangcun Zhou ,&nbsp;Mingqiang Hou ,&nbsp;Heping Sun","doi":"10.1016/j.eqrea.2024.100288","DOIUrl":"10.1016/j.eqrea.2024.100288","url":null,"abstract":"<div><p>On December 18, 2023, the <em>M</em><sub>S</sub> 6.2 Jishishan earthquake occurred in the northeastern region of the Qinghai-Xizang Plateau, causing heavy casualties and property damage in Gansu and Qinghai Provinces. In this study, we integrate space imaging geodesy, finite fault inversion, and back-projection methods to decipher its rupture property, including fault geometry, coseismic slip distribution, rupture direction, and propagation speed. The results reveal that the seismogenic fault dips to the southwest at an angle of 29°. The major slip asperity is dominated by reverse slip and is concentrated within a depth range of 7–16 ​km, which explains the significant uplift near the epicenter observed by both the Sentinel-1 ascending and descending InSAR data. Moreover, the teleseismic array waveforms indicate a northwest propagating rupture with an overall slow rupture velocity of ∼1.91 ​km/s (AK array) or 1.01 ​km/s (AU array).</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 2","pages":"Article 100288"},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467024000149/pdfft?md5=7c6a98adbc5c15004600c0c65eec9962&pid=1-s2.0-S2772467024000149-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139636315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seismic anisotropy and upper mantle dynamics in Alaska: A review of shear wave splitting analyses 阿拉斯加地震各向异性和上地幔动力学:剪切波分裂分析综述
Earthquake Research Advances Pub Date : 2024-04-01 DOI: 10.1016/j.eqrea.2024.100289
Zhaofeng Jin , Yuchen Yang , Muhammad Ishaidir Siregar , Zihao Mu , S.M. Ariful Islam , Qichao Zhao , Dan Wang , Fan Zhang , Xugang Yang , Liwei Song
{"title":"Seismic anisotropy and upper mantle dynamics in Alaska: A review of shear wave splitting analyses","authors":"Zhaofeng Jin ,&nbsp;Yuchen Yang ,&nbsp;Muhammad Ishaidir Siregar ,&nbsp;Zihao Mu ,&nbsp;S.M. Ariful Islam ,&nbsp;Qichao Zhao ,&nbsp;Dan Wang ,&nbsp;Fan Zhang ,&nbsp;Xugang Yang ,&nbsp;Liwei Song","doi":"10.1016/j.eqrea.2024.100289","DOIUrl":"10.1016/j.eqrea.2024.100289","url":null,"abstract":"<div><p>Shear wave splitting (SWS) is regarded as the most effective geophysical method to delineate mantle flow fields by detecting seismic azimuthal anisotropy in the earth's upper mantle, especially in tectonically active regions such as subduction zones. The Aleutian-Alaska subduction zone has a convergence rate of approximately 50 ​mm/yr, with a trench length reaching nearly 2800 ​km. Such a long subduction zone has led to intensive continental deformation and numerous strong earthquakes in southern and central Alaska, while northern Alaska is relatively inactive. The sharp contrast makes Alaska a favorable locale to investigate the impact of subduction on mantle dynamics. Moreover, the uniqueness of this subduction zone, including the unusual subducting type, varying slab geometry, and atypical magmatic activity and composition, has intrigued the curiosity of many geoscientists. To identify different sources of seismic anisotropy beneath the Alaska region and probe the influence of a geometrically varying subducting slab on mantle dynamics, extensive SWS analyses have been conducted in the past decades. However, the insufficient station and azimuthal coverage, especially in early studies, not only led to some conflicting results but also strongly limited the in-depth investigation of layered anisotropy and the estimation of anisotropy depth. With the completion of the Transportable Array project in Alaska, recent studies have revealed more detailed mantle structures and characteristics based on the dense station coverage and newly collected massive seismic data. In this study, we review significant regional- and continental-scale SWS studies in the Alaska region and conclude the mantle flow fields therein, to understand how a geometrically varying subducting slab alters the regional mantle dynamics. The summarized mantle flow mechanisms are believed to be conducive to the understanding of seismic anisotropy patterns in other subduction zones with a complicated tectonic setting.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 2","pages":"Article 100289"},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467024000150/pdfft?md5=45dc0e8dc6eb2a528d32ba244414ccf7&pid=1-s2.0-S2772467024000150-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139823204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The dynamic characteristics of saturated remolded loess under cyclic load 饱和重塑黄土在循环载荷作用下的动态特性
Earthquake Research Advances Pub Date : 2024-04-01 DOI: 10.1016/j.eqrea.2023.100235
Yuting Fu, Yanbo Cao, Jiaxu Kong, Jia Zheng, Jiaqi Mu, Jie Wang, Jianqi Zhuang
{"title":"The dynamic characteristics of saturated remolded loess under cyclic load","authors":"Yuting Fu,&nbsp;Yanbo Cao,&nbsp;Jiaxu Kong,&nbsp;Jia Zheng,&nbsp;Jiaqi Mu,&nbsp;Jie Wang,&nbsp;Jianqi Zhuang","doi":"10.1016/j.eqrea.2023.100235","DOIUrl":"10.1016/j.eqrea.2023.100235","url":null,"abstract":"<div><p>Due to the joint development characteristic and macropore structure of loess, it is easy to cause structure collapse under earthquake or artificial vibration. The study on the loess disaster effect and its mechanism under earthquake action is insufficient due to its complexity. Hence, to study the deformation and mechanical properties more accurately, the dynamic characteristics of saturated remolded loess under cyclic dynamic load were tested using a GDS dynamic triaxial instrument in this paper. The test results show that strain and pore water pressure increase gradually at different rates with the development of vibration, and there is an obvious inflection point in the time-history curve of both. When the number of vibrations (<em>N</em>) exceeds this point, the strain increases rapidly, and pore water pressure tends to be stable. Under the action of large amplitude and low-frequency dynamic load, the strain and pore water pressure increase rapidly with fewer vibrations and the deviator stress (<em>q</em>) decreases rapidly, while the sample achieves damage faster with the increase of amplitude. During the application of a dynamic load, the effective stress (<em>p</em>) gradually decreases and its rate of change slows down. Finally, when the saturated remolded loess is subjected to a constant-amplitude dynamic load, the combination of large amplitude and low frequency leads to the failure of the sample in the shortest time.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 2","pages":"Article 100235"},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467023000325/pdfft?md5=2f3602155d85a97360618c6f8011e915&pid=1-s2.0-S2772467023000325-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83922107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信