不同区域 S 波速度和方位各向异性的数据合并方法

{"title":"不同区域 S 波速度和方位各向异性的数据合并方法","authors":"","doi":"10.1016/j.eqrea.2024.100309","DOIUrl":null,"url":null,"abstract":"<div><div>When inverting the S-wave velocity and azimuthal anisotropy from ambient noise data, it is always to obtain the partial overlapped inversion results in contiguous different regions. Merging different data to achieve a consistent model becomes an essential requirement. Based on the S-wave velocity and azimuthal anisotropy obtained from different contiguous regions, this paper introduces three kinds of methods for merging data. For data from different regions with partial overlapping areas, the merged results could be calculated by direct average weighting (DAW), linear dynamic weighting (LDW), and Gaussian function weighting (GFW), respectively. Data tests demonstrate that the LDW and GFW methods can effectively merge data by reasonably allocating data weights to capitalize on the data quality advantages in each zone. In particular, they can resolve the data smoothness at the boundaries of data areas, resulting in a consistent data model in larger regions. This paper presents the effective methods and valuable experiences that can be referred to as advancing data merging technology.</div></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 4","pages":"Article 100309"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data merging methods for S-wave velocity and azimuthal anisotropy from different regions\",\"authors\":\"\",\"doi\":\"10.1016/j.eqrea.2024.100309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>When inverting the S-wave velocity and azimuthal anisotropy from ambient noise data, it is always to obtain the partial overlapped inversion results in contiguous different regions. Merging different data to achieve a consistent model becomes an essential requirement. Based on the S-wave velocity and azimuthal anisotropy obtained from different contiguous regions, this paper introduces three kinds of methods for merging data. For data from different regions with partial overlapping areas, the merged results could be calculated by direct average weighting (DAW), linear dynamic weighting (LDW), and Gaussian function weighting (GFW), respectively. Data tests demonstrate that the LDW and GFW methods can effectively merge data by reasonably allocating data weights to capitalize on the data quality advantages in each zone. In particular, they can resolve the data smoothness at the boundaries of data areas, resulting in a consistent data model in larger regions. This paper presents the effective methods and valuable experiences that can be referred to as advancing data merging technology.</div></div>\",\"PeriodicalId\":100384,\"journal\":{\"name\":\"Earthquake Research Advances\",\"volume\":\"4 4\",\"pages\":\"Article 100309\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Research Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772467024000356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Research Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772467024000356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从环境噪声数据反演 S 波速度和方位各向异性时,总是要在连续的不同区域获得部分重叠的反演结果。合并不同数据以获得一致的模型成为一项基本要求。基于从不同连续区域获得的 S 波速度和方位各向异性,本文介绍了三种合并数据的方法。对于部分重叠区域的不同区域数据,可分别采用直接平均加权法(DAW)、线性动态加权法(LDW)和高斯函数加权法(GFW)计算合并结果。数据测试表明,线性动态加权法和高斯函数加权法通过合理分配数据权重,充分利用各区的数据质量优势,可以有效地合并数据。特别是,它们可以解决数据区域边界的数据平滑问题,从而在更大的区域内形成一致的数据模型。本文介绍了这些有效的方法和宝贵的经验,可谓数据合并技术的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data merging methods for S-wave velocity and azimuthal anisotropy from different regions
When inverting the S-wave velocity and azimuthal anisotropy from ambient noise data, it is always to obtain the partial overlapped inversion results in contiguous different regions. Merging different data to achieve a consistent model becomes an essential requirement. Based on the S-wave velocity and azimuthal anisotropy obtained from different contiguous regions, this paper introduces three kinds of methods for merging data. For data from different regions with partial overlapping areas, the merged results could be calculated by direct average weighting (DAW), linear dynamic weighting (LDW), and Gaussian function weighting (GFW), respectively. Data tests demonstrate that the LDW and GFW methods can effectively merge data by reasonably allocating data weights to capitalize on the data quality advantages in each zone. In particular, they can resolve the data smoothness at the boundaries of data areas, resulting in a consistent data model in larger regions. This paper presents the effective methods and valuable experiences that can be referred to as advancing data merging technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信