Earthquake Research Advances最新文献

筛选
英文 中文
Characterization and application of submarine seismic ambient noise in the Bohai Sea and Yellow Sea 渤海和黄海海底地震环境噪声数据分析及其应用
Earthquake Research Advances Pub Date : 2024-10-01 DOI: 10.1016/j.eqrea.2024.100311
{"title":"Characterization and application of submarine seismic ambient noise in the Bohai Sea and Yellow Sea","authors":"","doi":"10.1016/j.eqrea.2024.100311","DOIUrl":"10.1016/j.eqrea.2024.100311","url":null,"abstract":"<div><div>Submarine seismic ambient noise imaging combines current marine and on-land seismic detection technologies. Based on data from several broadband shallow-sea type ocean bottom seismometers (SOBSs) deployed in the Bohai Sea and north Yellow Sea, this paper analyzes the submarine seismic ambient noise characteristics. It explores the theory, technology, method and application of the submarine seismic ambient noise imaging using the single-point horizontal and vertical spectral ratio method (HVSR). The observations yield the following results: 1) Submarine seismic ambient noise has consistent and constant energy, making it an appropriate passive seismic source for submarine high-frequency surface wave investigation. 2) Using the HVSR approach, a single three-component OBS could differentiate between the basement and sediments. Array seismic observation could be utilized to extract the frequency dispersion curve and invert it to obtain the velocity structure for more accurate stratification. 3) The SOBS we use is suitable for submarine surface wave exploration. 4) Tomography results with greater resolution and deeper penetration could be obtained by combining active and passive sources in a simultaneous inversion of the HVSR and frequency dispersion curve. Seamless land-to-ocean seismic research can be accomplished with submarine seismic ambient noise imaging technologies.</div></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 4","pages":"Article 100311"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141036524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D shear wave velocity and azimuthal anisotropy structure in the shallow crust of Binchuan Basin in Yunnan, Southwest China, from ambient noise tomography 通过环境噪声层析成像研究中国西南云南宾川盆地浅部地壳的三维剪切波速度和方位各向异性结构
Earthquake Research Advances Pub Date : 2024-10-01 DOI: 10.1016/j.eqrea.2024.100327
Jing Wang , Huajian Yao , Ying Liu , Baoshan Wang , Weitao Wang
{"title":"3D shear wave velocity and azimuthal anisotropy structure in the shallow crust of Binchuan Basin in Yunnan, Southwest China, from ambient noise tomography","authors":"Jing Wang ,&nbsp;Huajian Yao ,&nbsp;Ying Liu ,&nbsp;Baoshan Wang ,&nbsp;Weitao Wang","doi":"10.1016/j.eqrea.2024.100327","DOIUrl":"10.1016/j.eqrea.2024.100327","url":null,"abstract":"<div><div>The Binchuan Basin in northwest Yunnan, southwest China, is a rift basin developed at the intersection of the Red River Fault and Chenghai Fault, where historical earthquakes have occurred. Understanding the fine velocity structure of the shallow crust in this region can help improve earthquake location accuracy and our understanding of the relationship between fault zone structures and fault slip behaviors. Using the continuous waveform data recorded by 381 dense array stations in 2017, we obtained 7 915 Rayleigh-wave phase velocity dispersion curves in the period band of 0.2–6 ​s from ambient noise cross-correlation functions after rigorous data processing and quality control. We determined 3D isotropic and azimuthally anisotropic shear wave velocity models at depths above 6 ​km in the shallow crust based on the direct surface wave azimuthal anisotropic tomography method. The isotropic model reveals a strong correspondence between the S-wave velocity structure at depths of 0–1 ​km and the regional topography and lithology. The Binchuan depocenter, Zhoucheng depocenter, Xiangyun Basin, and Xihai Rift Basin are primarily composed of Quaternary deposits, which show low-velocity anomalies, while the regions with the Paleozoic shale, limestone, and basalt exhibit high-velocity anomalies. The nearly N–S orientation of fast directions from azimuthal anisotropy models are mainly controlled by the active Binchuan Fault with N–S strike as well as the NNW-oriented primary compressive stress.</div></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 4","pages":"Article 100327"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141706801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fast survey report about bridge damages by the 2024 Noto Peninsula Earthquake 关于 2024 年能登半岛地震造成的桥梁损坏的快速调查报告
Earthquake Research Advances Pub Date : 2024-10-01 DOI: 10.1016/j.eqrea.2024.100312
{"title":"A fast survey report about bridge damages by the 2024 Noto Peninsula Earthquake","authors":"","doi":"10.1016/j.eqrea.2024.100312","DOIUrl":"10.1016/j.eqrea.2024.100312","url":null,"abstract":"<div><div>The 2024 Noto Peninsula Earthquake was a significant seismic event that caused extensive damage across the region, characterized by a strong shake, subsequent tsunami, fires, liquefaction, and landslides. An emergency survey was conducted by our team from January 6 to January 8, 2024, focusing primarily on the impact of the earthquake on road bridges. This preliminary report includes ground motion records from the most affected areas and their response spectra, providing insights into the earthquake's intensity and characteristics. Among the key findings, substantial damage was reported to the long-span bridges connecting Noto Island to the mainland, specifically the Noto Island Ohashi Bridge and the Naka-Noto Agriculture Bridge (Twin Bridge Noto). These bridges are crucial as they serve as the sole access points to Noto Island. Additionally, the survey recorded damage to several other structures, including the Okogawa Bridges, Ouchigata Bridge, and a collapsed old wooden bridge.</div></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 4","pages":"Article 100312"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141057637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid determination of source parameters of the M6.2 Jishishan earthquake in Gansu Province and its application in emergency response 甘肃省积石山 M6.2 级地震震源参数的快速测定及其在应急响应中的应用
Earthquake Research Advances Pub Date : 2024-10-01 DOI: 10.1016/j.eqrea.2024.100310
{"title":"Rapid determination of source parameters of the M6.2 Jishishan earthquake in Gansu Province and its application in emergency response","authors":"","doi":"10.1016/j.eqrea.2024.100310","DOIUrl":"10.1016/j.eqrea.2024.100310","url":null,"abstract":"<div><div>In this study, we swiftly determined the focal parameters (focal mechanism, seismic imaging process, magnitude) of the Jishishan earthquake, leveraging a solved fault model to assess the intensity field and casualties promptly. The investigation began by retrieving the source mechanism through the P-wave initial motion and W-phase method. This enabled us to chart the spatial and temporal distribution of energy release in the source area via the back-projection technique. Following this, we estimated the earthquake's intensity field by merging the source inversion findings with the ground motion prediction equation. This analysis facilitated the evaluation of earthquake casualties, utilizing the theoretical intensity field and a casualty assessment model. Our findings indicate that the fault type is a thrust fault, characterized by a unilateral rupture in the direction of NW, with a rupture length spanning approximately 10–15 ​km and a duration ranging between 8 and 10 ​s. The earthquake's magnitude varied from <em>M</em> 5.9 to <em>M</em> 6.2. The demarcated high-intensity areas, as per our intensity assessment, align closely with the actual survey results. Furthermore, the predicted total casualties and identified critical rescue zones closely match the real-world casualty figures. These insights offer crucial technical support for governmental emergency command and rescue operations.</div></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 4","pages":"Article 100310"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141037375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Site classification methodology using support vector machine: A study 使用支持向量机的场地分类方法:一项研究
Earthquake Research Advances Pub Date : 2024-10-01 DOI: 10.1016/j.eqrea.2024.100294
{"title":"Site classification methodology using support vector machine: A study","authors":"","doi":"10.1016/j.eqrea.2024.100294","DOIUrl":"10.1016/j.eqrea.2024.100294","url":null,"abstract":"<div><div>The site effect is a crucial factor when analyzing seismic risk and establishing ground motion attenuation relationships. A number of countries have introduced building site classification into earthquake-resistant design codes to account for local site effects on ground motion. However, most site classification indicators rely on drilling data, which is often expensive and requires considerable manpower. As a result, the less detailed drilling data may lead to an undetermined site category of numerous stations. In this study, a Support Vector Machine (SVM) algorithm-based site classification model was trained to address this issue using strong ground motion data and site data from KiK-net and K-net. The classification model used the average HVSR curve of the labeled site and the combined inputs, including frequency, peak, “prominence, and “sharpness” extracted from the curve. The SVM classification model has an accuracy of 76.12% on the test set, with recall rates of 82.69%, 75%, and 63.64% for sites I, II, and III, respectively. The precision rates are 75.44%, 73.77%, and 87.50%, respectively, with F1 scores of 78.90%, 74.38%, and 73.68%. For sites without significant peaks in the HVSR curve, the HVSR curve value was used as the characteristic parameter (input), and the SVM-based site classification model was also trained. The accuracy of class I and II is 75.86%. The results of this study show higher recall and accuracy rates than those obtained using the spectral ratio curve matching method and GRNN method, indicating a better classification performance. Finally, the generalization ability of the model was verified using some basic stations in Xinjiang deployed by the “National Seismic Intensity Rapid Reporting and Early Warning Project”. The SVM-based site classification model that employs strong motion data can provide more reliable classification results for sites without detailed borehole information, and the site classification results can serve as a reference for probing ground motion attenuation relationships, ground motion simulation, and seismic fortification considering the site effect.</div></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 4","pages":"Article 100294"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140269571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data merging methods for S-wave velocity and azimuthal anisotropy from different regions 不同区域 S 波速度和方位各向异性的数据合并方法
Earthquake Research Advances Pub Date : 2024-10-01 DOI: 10.1016/j.eqrea.2024.100309
{"title":"Data merging methods for S-wave velocity and azimuthal anisotropy from different regions","authors":"","doi":"10.1016/j.eqrea.2024.100309","DOIUrl":"10.1016/j.eqrea.2024.100309","url":null,"abstract":"<div><div>When inverting the S-wave velocity and azimuthal anisotropy from ambient noise data, it is always to obtain the partial overlapped inversion results in contiguous different regions. Merging different data to achieve a consistent model becomes an essential requirement. Based on the S-wave velocity and azimuthal anisotropy obtained from different contiguous regions, this paper introduces three kinds of methods for merging data. For data from different regions with partial overlapping areas, the merged results could be calculated by direct average weighting (DAW), linear dynamic weighting (LDW), and Gaussian function weighting (GFW), respectively. Data tests demonstrate that the LDW and GFW methods can effectively merge data by reasonably allocating data weights to capitalize on the data quality advantages in each zone. In particular, they can resolve the data smoothness at the boundaries of data areas, resulting in a consistent data model in larger regions. This paper presents the effective methods and valuable experiences that can be referred to as advancing data merging technology.</div></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 4","pages":"Article 100309"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140755525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving image accuracy of ambient noise data by temporary seismic arrays at different observation periods 通过不同观测时段的临时地震阵列提高环境噪声数据的图像精度
Earthquake Research Advances Pub Date : 2024-10-01 DOI: 10.1016/j.eqrea.2024.100306
{"title":"Improving image accuracy of ambient noise data by temporary seismic arrays at different observation periods","authors":"","doi":"10.1016/j.eqrea.2024.100306","DOIUrl":"10.1016/j.eqrea.2024.100306","url":null,"abstract":"<div><div>When using ambient noise data to invert velocity and anisotropic structures, the two-station inter-correlation method requires synchronous stations. If there are multiple temporary seismic arrays with different observation periods in the study area, the seismic arrays are usually used selectively. This paper takes the Sanjiang lateral collision zone as an example, and utilizes the ambient noise data of multiple temporary seismic arrays at different observation periods to improve the accuracy of regional velocity structure and anisotropy by anchoring permanent seismic stations. In this paper, notable enhancements in S-wave velocity and azimuthal anisotropy imaging accuracy are achieved by integrating data from three temporary seismic arrays (SJ-Array, SL-Array, and ChinArray-I) with the permanent seismic network. The imaging resolutions for the S-wave velocity and azimuthal anisotropy above 40 ​km are 0.4° ​× ​0.4° and 0.5° ​× ​0.5°, respectively. In the region of the most concentrated array coverage, the imaging resolution of S-wave velocity can reach 0.33° ​× ​0.33° at depths of less than 30 ​km. These findings underscore the significant improvement in deep structure imaging accuracy by the synergistic integration of ambient noise data from multiple temporary seismic arrays.</div></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 4","pages":"Article 100306"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140401692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The cumulative plastic deformation demand for buckling restrained braces imposed by the strong motions in the 2023 Türkiye earthquake sequence 2023 年土耳其地震序列中的强烈运动对屈曲约束支撑的累积塑性变形要求
Earthquake Research Advances Pub Date : 2024-10-01 DOI: 10.1016/j.eqrea.2024.100313
{"title":"The cumulative plastic deformation demand for buckling restrained braces imposed by the strong motions in the 2023 Türkiye earthquake sequence","authors":"","doi":"10.1016/j.eqrea.2024.100313","DOIUrl":"10.1016/j.eqrea.2024.100313","url":null,"abstract":"<div><div>The Türkiye earthquake sequence on February 6, 2023, was featured by the closely located earthquake doublet of <em>M</em><sub>w</sub> 7.8 and <em>M</em><sub>w</sub> 7.5. The consequent strong ground motions are supposed to be able to impose high demands on the ultra-low-cycle fatigue performance of metallic dampers in buildings, including the widely used buckling restrained braces. This study evaluates the cumulative plastic deformation (<em>CPD</em>) demands on buckling-restrained braces (BRBs) in multi-story buildings imposed by the strong ground motions in the 2023 Türkiye earthquake doublet. Thirty-two records of the highest peak ground accelerations were selected from the strong motion database. Among them, eight captured the ground motions during both events, and the rest only captured the shaking of either of the events. The <em>CPD</em> demands on the BRBs in reinforced concrete frames with various fundamental periods, brace-to-frame stiffness ratios, and BRB ductility ratio are calculated by nonlinear time history analyses and are summarized in the form of enveloped spectra of <em>CPD</em> ratios at constant ductility. The results show that the <em>CPD</em> demands on BRBs increase with smaller brace-to-frame stiffness ratios and larger BRB ductility ratios. The enveloped <em>CPD</em> demands are several hundreds of times the nominal yield deformation of the BRB, which are much higher than the <em>CPD</em> demands for the calibration tests of BRBs stipulated by AISC 341 in the US.</div></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 4","pages":"Article 100313"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141398482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-dimensional fault model and features of chained hazards of the Luding MS 6.8 earthquake, Sichuan Province, China 中国四川省泸定 Ms6.8 地震三维断层模型及连锁灾害特征
Earthquake Research Advances Pub Date : 2024-10-01 DOI: 10.1016/j.eqrea.2024.100326
Xiwei Xu , Qixin Wang , Junjie Ren , Kang Li , Qi Yao , Chong Xu , Yongsheng Li , Yanfen An , Jia Cheng
{"title":"Three-dimensional fault model and features of chained hazards of the Luding MS 6.8 earthquake, Sichuan Province, China","authors":"Xiwei Xu ,&nbsp;Qixin Wang ,&nbsp;Junjie Ren ,&nbsp;Kang Li ,&nbsp;Qi Yao ,&nbsp;Chong Xu ,&nbsp;Yongsheng Li ,&nbsp;Yanfen An ,&nbsp;Jia Cheng","doi":"10.1016/j.eqrea.2024.100326","DOIUrl":"10.1016/j.eqrea.2024.100326","url":null,"abstract":"<div><div>The <em>M</em><sub>S</sub> 6.8 Luding earthquake in 2022 is located on the NNW-trending Moxi segment of the Xianshuihe fault with left-lateral strike-slip behavior. This area is where the Xianshuihe, Anninghe, Daliangshan and Longmenshan faults intersect. China Earthquake Administration has identified that intersection area, among the Moxi segment of the Xianshuihe fault, the Anninghe fault, the Daliangshan fault and the southern part of the Longmenshan fault, as a high-magnitude earthquake hazard area. According to existing data on the Luding earthquake, including the focal parameters, the spatial distribution of re-located aftershocks, dominated azimuth of the earthquake intensities and earthquake-induced ground fissures, we built a 3D earthquake fault model. We found that two discontinuous NNW-trending vertical strike-slip faults with left stepping were the seismogenic faults of the Luding earthquake. Its coseismic left-lateral dislocation triggered transtensional slips and aftershocks on the NW-trending secondary faults at its northernmost tensile area. Meanwhile, local crustal coseismic shortening on the side of Mt. Gongga triggered the aftershocks on the NE- and NW-trending secondary conjugated strike-slip faults, which were confirmed by GNSS observations and InSAR deformation field around the epicenter. This earthquake rupturing pattern also controlled the spatial distribution of the earthquake intensity IX area and earthquake chain hazards. The Coulomb stress calculation shows that the Luding earthquake increases the risk of high-magnitude earthquake occurrence on the southernmost part of the Xianshuihe fault and the Anninghe fault. Finally, we suggested doing good monitoring of the Anninghe fault and the southernmost part of the Xianshuihe fault and avoiding active faults with seismogenic capacity and areas prone to earthquake-chained hazards during the site selection and planning of reconstruction.</div></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 4","pages":"Article 100326"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141697644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalog of focal mechanism solutions for the Sichuan and Yunnan region from 2012 to 2022 using the community velocity model of Southwest China 利用中国西南群落速度模型计算的 2012 至 2022 年四川和云南地区焦点机制解算式目录
Earthquake Research Advances Pub Date : 2024-10-01 DOI: 10.1016/j.eqrea.2024.100334
Tairan Xu, Xinghui Huang, Li Sun
{"title":"Catalog of focal mechanism solutions for the Sichuan and Yunnan region from 2012 to 2022 using the community velocity model of Southwest China","authors":"Tairan Xu,&nbsp;Xinghui Huang,&nbsp;Li Sun","doi":"10.1016/j.eqrea.2024.100334","DOIUrl":"10.1016/j.eqrea.2024.100334","url":null,"abstract":"<div><div>The focal mechanism solution is one of the important focal parameters for exploring fault activity and studying regional stress distribution and it has a wide range of applications. The geological structure of the Sichuan-Yunnan region in China is complex, with frequent earthquakes and abundant historical observation data, making it one of the popular areas of concern for scholars. This study utilizes the high-precision community velocity model v2.0 of southwest China, obtained through joint inversion based on multiple data methods. The Cut-And-Paste (CAP) method was employed to fit and invert the observed waveforms of 1475 events with <em>M</em><sub>L</sub> ​≥ ​3.5 in the Sichuan-Yunnan region from January 2012 to December 2022, thereby constructing a catalog of double-couple focal mechanisms. By comparing the focal mechanism inversion results of small earthquakes with those from multiple one-dimensional velocity models and conducting comparative statistical analysis on events below magnitude 4, it has been demonstrated that the model used in this study provides a better fit than one-dimensional models. This contributes to establishing the lower magnitude limit for producing deeper focal mechanism solutions. This study compares the results of larger magnitude earthquakes in the catalog with those published by the Global Centroid-Moment Tensor (GCMT) project and smaller magnitude earthquakes with the catalog released by the Institute of Earthquake Forecasting, China Earthquake Administration. These comparisons serve to validate the accuracy of the catalog results. Leveraging the high-resolution velocity model, this catalog has re-examined the historical earthquake focal mechanism catalog of the Sichuan-Yunnan region. The inversion has yielded reliable results for smaller magnitudes and a greater number of events, providing additional data and support for understanding the regional stress field, active faults, the mechanisms of large earthquake genesis, and earthquake prediction efforts. Consequently, this enhances the depth of scientific research in the Sichuan-Yunnan region.</div></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 4","pages":"Article 100334"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信