High-performance CPU-GPU heterogeneous computing method for 9-component ambient noise cross-correlation

Jingxi Wang , Weitao Wang , Chao Wu , Lei Jiang , Hanwen Zou , Huajian Yao , Ling Chen
{"title":"High-performance CPU-GPU heterogeneous computing method for 9-component ambient noise cross-correlation","authors":"Jingxi Wang ,&nbsp;Weitao Wang ,&nbsp;Chao Wu ,&nbsp;Lei Jiang ,&nbsp;Hanwen Zou ,&nbsp;Huajian Yao ,&nbsp;Ling Chen","doi":"10.1016/j.eqrea.2024.100357","DOIUrl":null,"url":null,"abstract":"<div><div>Ambient noise tomography is an established technique in seismology, where calculating single- or nine-component noise cross-correlation functions (NCFs) is a fundamental first step. In this study, we introduced a novel CPU-GPU heterogeneous computing framework designed to significantly enhance the efficiency of computing 9-component NCFs from seismic ambient noise data. This framework not only accelerated the computational process by leveraging the Compute Unified Device Architecture (CUDA) but also improved the signal-to-noise ratio (SNR) through innovative stacking techniques, such as time-frequency domain phase-weighted stacking (tf-PWS). We validated the program using multiple datasets, confirming its superior computation speed, improved reliability, and higher signal-to-noise ratios for NCFs. Our comprehensive study provides detailed insights into optimizing the computational processes for noise cross-correlation functions, thereby enhancing the precision and efficiency of ambient noise imaging.</div></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"5 3","pages":"Article 100357"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Research Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772467024000836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ambient noise tomography is an established technique in seismology, where calculating single- or nine-component noise cross-correlation functions (NCFs) is a fundamental first step. In this study, we introduced a novel CPU-GPU heterogeneous computing framework designed to significantly enhance the efficiency of computing 9-component NCFs from seismic ambient noise data. This framework not only accelerated the computational process by leveraging the Compute Unified Device Architecture (CUDA) but also improved the signal-to-noise ratio (SNR) through innovative stacking techniques, such as time-frequency domain phase-weighted stacking (tf-PWS). We validated the program using multiple datasets, confirming its superior computation speed, improved reliability, and higher signal-to-noise ratios for NCFs. Our comprehensive study provides detailed insights into optimizing the computational processes for noise cross-correlation functions, thereby enhancing the precision and efficiency of ambient noise imaging.
九分量环境噪声互关的高性能CPU-GPU异构计算方法
环境噪声层析成像是地震学中的一项成熟技术,其中计算单分量或九分量噪声互相关函数(nfc)是基本的第一步。在这项研究中,我们引入了一种新的CPU-GPU异构计算框架,旨在显著提高从地震环境噪声数据中计算9分量nfc的效率。该框架不仅利用计算统一设备架构(CUDA)加速了计算过程,而且通过创新的叠加技术,如时频域相位加权叠加(tf-PWS),提高了信噪比(SNR)。我们使用多个数据集验证了该程序,确认了其优越的计算速度、改进的可靠性和nfc的更高信噪比。我们的综合研究为优化噪声互相关函数的计算过程提供了详细的见解,从而提高了环境噪声成像的精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信