Three-dimensional fault model and features of chained hazards of the Luding MS 6.8 earthquake, Sichuan Province, China

Xiwei Xu , Qixin Wang , Junjie Ren , Kang Li , Qi Yao , Chong Xu , Yongsheng Li , Yanfen An , Jia Cheng
{"title":"Three-dimensional fault model and features of chained hazards of the Luding MS 6.8 earthquake, Sichuan Province, China","authors":"Xiwei Xu ,&nbsp;Qixin Wang ,&nbsp;Junjie Ren ,&nbsp;Kang Li ,&nbsp;Qi Yao ,&nbsp;Chong Xu ,&nbsp;Yongsheng Li ,&nbsp;Yanfen An ,&nbsp;Jia Cheng","doi":"10.1016/j.eqrea.2024.100326","DOIUrl":null,"url":null,"abstract":"<div><div>The <em>M</em><sub>S</sub> 6.8 Luding earthquake in 2022 is located on the NNW-trending Moxi segment of the Xianshuihe fault with left-lateral strike-slip behavior. This area is where the Xianshuihe, Anninghe, Daliangshan and Longmenshan faults intersect. China Earthquake Administration has identified that intersection area, among the Moxi segment of the Xianshuihe fault, the Anninghe fault, the Daliangshan fault and the southern part of the Longmenshan fault, as a high-magnitude earthquake hazard area. According to existing data on the Luding earthquake, including the focal parameters, the spatial distribution of re-located aftershocks, dominated azimuth of the earthquake intensities and earthquake-induced ground fissures, we built a 3D earthquake fault model. We found that two discontinuous NNW-trending vertical strike-slip faults with left stepping were the seismogenic faults of the Luding earthquake. Its coseismic left-lateral dislocation triggered transtensional slips and aftershocks on the NW-trending secondary faults at its northernmost tensile area. Meanwhile, local crustal coseismic shortening on the side of Mt. Gongga triggered the aftershocks on the NE- and NW-trending secondary conjugated strike-slip faults, which were confirmed by GNSS observations and InSAR deformation field around the epicenter. This earthquake rupturing pattern also controlled the spatial distribution of the earthquake intensity IX area and earthquake chain hazards. The Coulomb stress calculation shows that the Luding earthquake increases the risk of high-magnitude earthquake occurrence on the southernmost part of the Xianshuihe fault and the Anninghe fault. Finally, we suggested doing good monitoring of the Anninghe fault and the southernmost part of the Xianshuihe fault and avoiding active faults with seismogenic capacity and areas prone to earthquake-chained hazards during the site selection and planning of reconstruction.</div></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 4","pages":"Article 100326"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Research Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772467024000526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The MS 6.8 Luding earthquake in 2022 is located on the NNW-trending Moxi segment of the Xianshuihe fault with left-lateral strike-slip behavior. This area is where the Xianshuihe, Anninghe, Daliangshan and Longmenshan faults intersect. China Earthquake Administration has identified that intersection area, among the Moxi segment of the Xianshuihe fault, the Anninghe fault, the Daliangshan fault and the southern part of the Longmenshan fault, as a high-magnitude earthquake hazard area. According to existing data on the Luding earthquake, including the focal parameters, the spatial distribution of re-located aftershocks, dominated azimuth of the earthquake intensities and earthquake-induced ground fissures, we built a 3D earthquake fault model. We found that two discontinuous NNW-trending vertical strike-slip faults with left stepping were the seismogenic faults of the Luding earthquake. Its coseismic left-lateral dislocation triggered transtensional slips and aftershocks on the NW-trending secondary faults at its northernmost tensile area. Meanwhile, local crustal coseismic shortening on the side of Mt. Gongga triggered the aftershocks on the NE- and NW-trending secondary conjugated strike-slip faults, which were confirmed by GNSS observations and InSAR deformation field around the epicenter. This earthquake rupturing pattern also controlled the spatial distribution of the earthquake intensity IX area and earthquake chain hazards. The Coulomb stress calculation shows that the Luding earthquake increases the risk of high-magnitude earthquake occurrence on the southernmost part of the Xianshuihe fault and the Anninghe fault. Finally, we suggested doing good monitoring of the Anninghe fault and the southernmost part of the Xianshuihe fault and avoiding active faults with seismogenic capacity and areas prone to earthquake-chained hazards during the site selection and planning of reconstruction.
中国四川省泸定 Ms6.8 地震三维断层模型及连锁灾害特征
2022 年发生的泸定 6.8 级地震位于咸水河断层墨溪段的 NNW 走向上,具有左侧走向滑动特征。该区域是咸水河断层、安宁河断层、大凉山断层和龙门山断层的交汇处。中国地震局已将仙水河断层磨溪段、安宁河断层、大凉山断层和龙门山断层南部的交汇区确定为高震危险区。根据已有的泸定地震数据,包括震源参数、余震重定位空间分布、地震烈度主导方位角和地震诱发地裂缝等,我们建立了三维地震断层模型。我们发现,泸定地震的发震断层是两条不连续的 NNW 向垂直走向、左阶梯状的走向滑动断层。它的同震左侧变位引发了其最北端受拉区西北走向次级断层的扭转滑动和余震。同时,贡嘎山一侧的局部地壳共震缩短引发了东北向和西北向次级共轭走向滑动断层的余震,震中周围的 GNSS 观测和 InSAR 变形场证实了这一点。这种地震破裂模式也控制了地震烈度 IX 区的空间分布和地震连锁危害。库仑应力计算表明,泸定地震增加了咸水河断层最南端和安宁河断层发生高震的风险。最后,建议在重建选址和规划时,做好安宁河断层和咸水河断层最南端的监测工作,避开具有发震能力的活动断层和地震连锁灾害易发区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信