Applied ResearchPub Date : 2024-08-13DOI: 10.1002/appl.202400102
Brenda Micheni, Eddy Owaga, Beatrice Mugendi
{"title":"Physicochemical and sensory properties of fermented milk supplemented with sundried African horned melon","authors":"Brenda Micheni, Eddy Owaga, Beatrice Mugendi","doi":"10.1002/appl.202400102","DOIUrl":"https://doi.org/10.1002/appl.202400102","url":null,"abstract":"<p>African horned melon (AHM) (<i>Cucumis metuliferus</i>), indigenous to Kenya. It contains high polyphenol and antioxidant content, yet remains underutilized in food products. This study sought to increase the utilization of AHM by developing a supplemented milk product and evaluating the effects of sundried AHM powder on the physicochemical and sensory properties of the fermented milk product. The fermented milk was supplemented with three different forms of AHM powder: whole fruit, peel, and seed, at concentrations of 0.5%, 0.7%, and 1% w/v. Physicochemical parameters such as pH, total titratable acidity (TTA), syneresis, texture, and viscosity were measured, alongside sensory acceptability assessments. Statistical analysis demonstrated significant differences (<i>p</i> < 0.05) in physicochemical and sensory properties between the control (did not contain AHM) and supplemented samples, particularly at higher concentrations and extended storage periods. The inclusion of AHM powder markedly influenced the fermented milk's properties, with increased TTA and syneresis in samples with higher melon powder concentrations. TTA ranged between 0.32% and 0.46% among all samples during storage which were comparatively higher than the recommended values for fermented milk products at 0.3%. pH findings range was 4.22 and 4.58. The pH range between 4.2 and 4.6 is recommended by FDA for fermented milk. Syneresis were between 2% and 13%. Texture was between 1.24 and 3.95 N. Viscosity was between 1.67 and 3.87 cP. Sensory scores ranged from 8.00 to 2.67 during storage. Fruit seed powder (FSP1) recorded the lowest amount of pH. Control maintained a higher score in the sensory attributes.</p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"3 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202400102","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142764101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied ResearchPub Date : 2024-08-13DOI: 10.1002/appl.202400134
Ansari Shadab Azhar Nazeer Iqbal, M Abdur Rahman, Hussain H. Naveed
{"title":"The effect of three types of heat treatment on the hardness and corrosion resistance of Al 2014 alloy","authors":"Ansari Shadab Azhar Nazeer Iqbal, M Abdur Rahman, Hussain H. Naveed","doi":"10.1002/appl.202400134","DOIUrl":"https://doi.org/10.1002/appl.202400134","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 <p>Al 2014 is a high-strength aluminum alloy widely used in the aerospace and automotive industries for its mechanical strength. This research examines the effects of three heat treatment processes—retrogression and re-aging (RRA), T6 standard aging, and a modified RRA with high-temperature pre-aging—on the hardness and corrosion resistance of Al 2014. Polarization studies using potentiodynamic electrochemical methods in a 3.5 wt% sodium chloride solution were conducted to evaluate the corrosion resistance. The results showed that heat treatment, which causes precipitation hardening, shifted the corrosion potential (<i>E</i>) toward a more noble direction. The formation of Al<sub>2</sub>Cu precipitates is associated with improved corrosion resistance. Additionally, samples treated with the T6 process exhibited a higher corrosion current density compared to untreated Al 2014 alloy samples, indicating superior corrosion resistance. Analysis of corroded surfaces using scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) showed evidence of general and pitting corrosion, with distinct patterns among the three heat treatment processes. A comparison of the results revealed that the T6 standard aging process provided the best combination of hardness and corrosion resistance. This was likely due to the formation of stable precipitates during aging. The results also indicated that the RRA process showed good performance, suggesting it is a viable alternative when a balance between hardness and toughness is required. The modified RRA with high-temperature pre-aging resulted in lower performance, likely due to overaging, which reduced hardness and corrosion resistance. These findings highlight the significance of heat treatment in improving the corrosion resistance of Al 2014 alloy. This suggests that particular processes can enhance the alloy's durability in corrosive environments, potentially leading to a longer lifespan and reduced maintenance costs. The T6 standard aging process offers the best balance of enhanced hardness and corrosion resistance for Al 2014 alloy, making it ideal for extending lifespan and reducing maintenance costs in corrosive environments. Careful selection of heat treatment is crucial based on specific alloy performance requirements.</p>\u0000 </section>\u0000 </div>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"3 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202400134","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142764102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied ResearchPub Date : 2024-08-11DOI: 10.1002/appl.202470401
{"title":"Cover Image: Volume 3 Issue 4","authors":"","doi":"10.1002/appl.202470401","DOIUrl":"https://doi.org/10.1002/appl.202470401","url":null,"abstract":"<p><i>Applied Research</i> is a multidisciplinary journal that focuses on bridging fundamental research and practical applications, supporting sustainable problem-solving and global initiatives. The journal covers high-quality research in fields such as Materials, Applied Physics, Chemistry, Applied Biology, Food Science, Engineering, Biomedical Sciences, and Social Sciences. Authors can submit various article types, including Reviews, Tutorials, and Research Articles. The journal aims to highlight innovative research that demonstrates the application of knowledge, methods, instrumentation, and technology into solutions.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202470401","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied ResearchPub Date : 2024-08-07DOI: 10.1002/appl.202400165
Leonardo Santana, João F. F. Machado, Guilherme M. O. Barra, Jorge Lino Alves
{"title":"Analysis of the limitations of organic powder for high-temperature reprocessing of printed PLA parts","authors":"Leonardo Santana, João F. F. Machado, Guilherme M. O. Barra, Jorge Lino Alves","doi":"10.1002/appl.202400165","DOIUrl":"https://doi.org/10.1002/appl.202400165","url":null,"abstract":"<p>Fused filament fabrication (FFF) is the most predominant additive manufacturing technology, not only in the industry but also for many hobbyists. This technology's popularity is because it is inexpensive, user-friendly, and open source. However, compared to other manufacturing processes, like injection molding, FFF products still have some limitations, particularly mechanical properties. Despite this, some post-processing techniques have been developed to improve such properties. One of these techniques involves applying heat treatments (HT). The objective of these HTs is to densify these FFF products and increase the crystallization degree of the semi-crystalline polylactic acid (PLA). This kind of post-processing is claimed to be a viable way to improve mechanical properties. The reprocessing in a powder bed is a type of HT which prevents thermal distortion by using a powder as a mold for the FFF component. The powder should be low cost and have easy access for any user. In this work, this HT was performed in flexural samples with an organic powder (corn flour) and it has improved maximum flexural strength (MFS) and flexural modulus (FM) by 18% and 14%, respectively. The color of parts, before and after HT, was also measured and a slight modification of the response was observed due to the HT. Despite the gains in mechanical properties, it was verified that corn flour produces a considerable amount of smoke during this HT. Thus, it was performed a thermogravimetric analysis (TGA) in three types of powders, namely corn flour, coffee powder, and corn starch. It was concluded that starch is the best one, however considering that all three organic powders release smoke, it is advisable not to use them for HT.</p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"3 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202400165","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142763981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied ResearchPub Date : 2024-08-04DOI: 10.1002/appl.202400053
Abdulhakeem Nurudeen, Ishaya Dagwa, Benjamin Ugheoke, Ibrahim Muhammad, Adiat Arogundade
{"title":"Effect of magnesia additive on the morphology and physico-mechanical properties of kaolinitic clays ceramics","authors":"Abdulhakeem Nurudeen, Ishaya Dagwa, Benjamin Ugheoke, Ibrahim Muhammad, Adiat Arogundade","doi":"10.1002/appl.202400053","DOIUrl":"https://doi.org/10.1002/appl.202400053","url":null,"abstract":"<p>Nigeria is rich in various minerals, including crude oil and solid minerals. However, despite this abundance, effectively utilizing these resources remains a challenge. Kaolin, also known as white China clay, is a crucial raw material used in industries such as ceramics, paper, paint, plastic, and welding electrodes. Despite its plentiful availability in Nigeria, kaolin has not been adequately exploited. Consequently, Nigeria spends approximately 14.35 million USD annually to import refined kaolin to meet local demand, due to the lack of capacity to process it to the required industrial standards. This study investigates the effect of magnesia (MgO) on the morphology and physico-mechanical properties of kaolinitic clay ceramics using the slip-casting method. Various analytical techniques were employed to examine the kaolin, including X-ray fluorescence (XRF), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy (SEM). Also, compressive and flexural tests were conducted. The XRF analysis revealed that all samples contained SiO<sub>2</sub> (54.41%wt), Al<sub>2</sub>O<sub>3</sub> (34.05%wt), and other trace elements. The main mineral phases identified were quartz, microcline, and orthoclase. Among the samples, 30–200 exhibited the highest compressive strength at 218 MPa, while the highest flexural rigidity was observed in sample 15–200. The results indicated that MgO significantly affected the properties of kaolin, as the control sample had a compressive strength of 59 MPa. The study also found that the quantities of additives should align with stoichiometric requirements. Results showed hypo-stoichiometry in samples 30–600 and 15–400, and hyper-stoichiometry in sample 60–200. XRF, XRD, and FTIR spectra confirmed the elemental and chemical compositions of the samples, while SEM analysis revealed the morphological structure. It was observed that increasing the magnesia content from 10% to 30% led to an increase in pore spaces within the samples. TGA analysis provided insights into the relationship between mass loss and temperature variation in the ceramic samples, While The DTG curves explain the endothermic phase changes over changes in temperature; at 50–150°C, loss of the water phase is complete, at 300–400°C burning of organic matter phase is achieved and at 500–700°C endothermic dihyroxylation phase begins forming armorphous meta-kaolin.</p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"3 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202400053","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142763961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied ResearchPub Date : 2024-07-30DOI: 10.1002/appl.202300128
Thomas Walther
{"title":"Recent improvements in quantification of energy-dispersive X-ray spectra and maps in electron microscopy of semiconductors","authors":"Thomas Walther","doi":"10.1002/appl.202300128","DOIUrl":"https://doi.org/10.1002/appl.202300128","url":null,"abstract":"<p>This tutorial-style article describes recent improvements in the quantitative application of energy-dispersive X-ray spectroscopy and mapping in electron microscopes to semiconductors, with a focus on spatial resolution, sensitivity and accuracy obtainable in characterising the chemical composition of thin layers, quantum wells and quantum dots. Various approaches applicable in scanning electron microscopy of bulk and (scanning) transmission electron microscopy of thin film samples are outlined. Applications to semiconductor quantum well systems, mainly based on indium gallium arsenide and silicon germanium studied in the author's laboratory, are provided as examples.</p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"3 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202300128","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142764434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied ResearchPub Date : 2024-07-23DOI: 10.1002/appl.202400034
Surjit Sahoo, Debayan Chatterjee, Subhasish Basu Majumder, Kh M Asif Raihan, Brice LaCroix, Suprem R. Das
{"title":"Comparative study of pure and mixed phase sulfurized-carbon black in battery cathodes for lithium sulfur batteries","authors":"Surjit Sahoo, Debayan Chatterjee, Subhasish Basu Majumder, Kh M Asif Raihan, Brice LaCroix, Suprem R. Das","doi":"10.1002/appl.202400034","DOIUrl":"10.1002/appl.202400034","url":null,"abstract":"<p>Lithium-sulfur battery (LSB) chemistry is regarded as one of the most promising contenders for powering next-generation electronics, including electric vehicles. This is due to its high theoretical capacity, the use of inexpensive and environmentally friendly materials, and its alignment with climate-smart manufacturing principles. Sulfur, the electroactive element in LSBs, undergoes lithiation to form a series of polysulfides, each contributing to the battery's energy density. However, this chemistry encounters several challenges, particularly concerning the stability of sulfur. Recent studies have shown that the presence of a full gamma phase of sulfur in an LSB cathode significantly enhances the capacity and overall cell performance. However, despite the advantages of cathodes with gamma sulfur, the characteristics of LSBs with mixed crystal phases of sulfur (alpha, beta, and gamma) have not been extensively studied. In this context, we developed a simple and cost-effective synthesis method to produce both single-phase (alpha) and mixed-phase sulfur (primarily a mixture of alpha and gamma, with a trace of beta) and conducted their detailed physical and electrochemical characterization for use as electroactive cathode materials in LSBs. The cells fabricated using sulfur-carbon black as the cathode delivered a specific capacity of approximately 640 mAh/g at a current density of 275 mA/g, demonstrating excellent cyclic stability over 50 cycles with a capacity retention of around 97%. This performance is superior to that of the sulfur-baked carbon black composite cathode, which achieved 440 mAh/g at the same current density.</p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"3 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202400034","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141811168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied ResearchPub Date : 2024-07-19DOI: 10.1002/appl.202400059
Lena Schaller, Katharina Hofmann, Fabienne Geiger, Alexander Dietrich
{"title":"Electrical cell-substrate impedance sensing (ECIS) in lung biology and disease","authors":"Lena Schaller, Katharina Hofmann, Fabienne Geiger, Alexander Dietrich","doi":"10.1002/appl.202400059","DOIUrl":"10.1002/appl.202400059","url":null,"abstract":"<p>The lungs are exposed to a hostile environment from both sites: the airways and the vasculature. However, an efficient gas exchange of oxygen (O<sub>2</sub>) and CO<sub>2</sub> is only possible through a very thin alveolo-capillary membrane. Therefore, maintaining cell barrier integrity is essential for respiratory health and function. On the vascular site, endothelial cells form a natural barrier, while in the airways epithelial cells are most important for protection of the lung tissues. Moreover, fibroblasts, by transforming to myofibroblasts, are essential for wound closure after mechanical and chemical microinjuries in the respiratory tract. Along this line, loss of cell resistance in vascular endothelial and lung epithelial cells enhances invasion of pathogens (e.g., SARS-CoV-2) and results in pulmonary edema formation, while increasing barrier function of pulmonary (myo)fibroblasts blocks gas exchange in patients with pulmonary fibrosis. Therefore, electrical cell-substrate impedance sensing-based quantification of changes in cell barrier function in lung endothelial and epithelial cells as well as fibroblasts after application of harmful triggers (e.g., hypoxia, receptor agonists, and toxicants) is a convenient and state-of-the-art technique. After isolation of primary cells from mouse models and human tissues, changes in cell resistance can be detected in real time. By using lung cells from gene-deficient mouse models, microRNAs or the small-interfering RNA technology essential proteins for cell adhesion, for example, ion channels of the transient receptor potential family are identified in comparison to wild-type control cells. In the future, these proteins may be useful as drug targets for novel therapeutic options in patients with lung edema or pulmonary fibrosis.</p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"3 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202400059","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141822210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied ResearchPub Date : 2024-07-15DOI: 10.1002/appl.202400096
Firoz Ahmed, Brenda Hutton-Prager
{"title":"Xanthan gum modification to surface and interfacial properties between soil-based matrixes and petroleum oils to minimize soil pollution","authors":"Firoz Ahmed, Brenda Hutton-Prager","doi":"10.1002/appl.202400096","DOIUrl":"10.1002/appl.202400096","url":null,"abstract":"<p>A novel approach exploiting surfaces and interfaces between liquid oils and porous soil media was used to investigate the role of xanthan gum (XG) in minimizing the spread of petroleum oil spills on land. 1.6 wt% XG added to soil-based mixture matrixes (topsoil, sand, clay, and moisture) resulted in a 50% reduction in oil spreading area at 0 and 5 wt% moisture content, at 1.3 cm depth of soil matrix. Also recorded was a 45% increase in time taken for the low- and medium-viscosity oils to penetrate this soil depth. XG alters the surface energy and roughness of the soil matrixes, which additionally contributes to a reduction in oil spreading capabilities. Interfacial phenomena between individual oil droplets and soil matrixes demonstrated variable findings of droplet spreading and penetration with XG, depending upon the heterogeneity of the soil matrix itself. XG assisted a reduced lateral spread in heterogeneous soil matrixes and a reduced vertical penetration in clay-based matrixes. These interfacial results highlighted the often-observed differing transport phenomena at the interface compared with the bulk. This initial study demonstrates a novel approach to incorporate surface energy phenomena into the suite of soil remediation efforts by introducing natural biopolymers in high-risk land oil-spill areas to slow oil contaminant spread. Future studies will further characterize the benefits of XG in containing oil flow.</p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"3 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202400096","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141646461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Applied ResearchPub Date : 2024-07-14DOI: 10.1002/appl.202300112
A. Athanasiadi, M. Andrikopoulou, M. Smyrnioti, Y. Georgiou, M. Zamparas, V. Dracopoulos, T. Ioannides
{"title":"Advanced, high-performance thermo-insulating plaster","authors":"A. Athanasiadi, M. Andrikopoulou, M. Smyrnioti, Y. Georgiou, M. Zamparas, V. Dracopoulos, T. Ioannides","doi":"10.1002/appl.202300112","DOIUrl":"10.1002/appl.202300112","url":null,"abstract":"<p>The main purpose of many current studies regarding energy efficiency is the improvement of the thermal resistance of buildings. To fulfill this goal, the development of advanced insulating materials, to be incorporated in the building envelopes, is imperative. Aerogels are ultralight porous materials typically produced via the sol-gel process followed by supercritical drying of the wet gel. They exhibit very high porosities and a mesoporous-macroporous structure which endows aerogels with extremely low thermal conductivity. This makes them ideal candidates for ambient thermal insulation applications. However, the cost for aerogel insulation is considerably higher than the one of standard insulation products. In the present work, highly porous aerogel-like materials based on silica and commercial novolac resin were developed and added to common mortars. The prepared materials were dried under ambient pressure to minimize the manufacturing cost. The bulk density of silica quasi-aerogels was 0.03 g/cm<sup>3</sup>–0.09 g/cm<sup>3</sup> and that of the novolac resin samples 0.09 g/cm<sup>3</sup>–0.21 g/cm<sup>3</sup>. The aerogels were incorporated in mortars and cured for 28 days before measurement of thermal conductivity. The values of the thermal conductivity coefficient of the measured samples were 0.047 W/m K–0.058 W/m K for the silica reinforced mortars and 0.036 W/m K–0.044 W/m K for the novolac reinforced ones.</p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"3 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202300112","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141650226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}