Polyaniline-Doped Textile-Based Triboelectric Nanogenerator: Self-Powered Device for Wearable Electronics

Sebghatullah Amini, Rumana Farheen Sagade Muktar Ahmed, Sangamesha Madanahalli Ankanathappa, Krishnaveni Sannathammegowda
{"title":"Polyaniline-Doped Textile-Based Triboelectric Nanogenerator: Self-Powered Device for Wearable Electronics","authors":"Sebghatullah Amini,&nbsp;Rumana Farheen Sagade Muktar Ahmed,&nbsp;Sangamesha Madanahalli Ankanathappa,&nbsp;Krishnaveni Sannathammegowda","doi":"10.1002/appl.202400124","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The emergence of wearable electronics in contemporary lifestyles has spurred the need for smart fabrics capable of harnessing biomechanical energy. In the present study, a flexible polyaniline-doped textile-based triboelectric nanogenerator (PT-TENG) is designed to harvest low-frequency mechanical vibrations and convert them into electricity. For the device fabrication, five different textile fabrics are doped with conducting PANI, which is utilized as the tribopositive material, PVC thin film as the tribonegative material, and Al foil as electrodes. The PT-TENG works in vertical-contact separation mode, devised in arch structure for easy and complete contact between the working layers. Interestingly, the device featuring a PANI-doped silk fabric generated the highest output voltage of 257.68 V and a current of 5.36 μA, respectively. Additionally, the PT-TENG exhibits mechanical durability and electrical stability during continuous 7000 cyclic operations. Furthermore, the PT-TENG showcases practical applications such as charging commercial capacitors, powering green LEDs and smartwatches, and as a self-powered touch sensor. Thus, the PT-TENG offers a facile fabrication process and robustness, highlighting its potential for sustainable energy harvesting in wearable electronics.</p></div>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.202400124","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/appl.202400124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of wearable electronics in contemporary lifestyles has spurred the need for smart fabrics capable of harnessing biomechanical energy. In the present study, a flexible polyaniline-doped textile-based triboelectric nanogenerator (PT-TENG) is designed to harvest low-frequency mechanical vibrations and convert them into electricity. For the device fabrication, five different textile fabrics are doped with conducting PANI, which is utilized as the tribopositive material, PVC thin film as the tribonegative material, and Al foil as electrodes. The PT-TENG works in vertical-contact separation mode, devised in arch structure for easy and complete contact between the working layers. Interestingly, the device featuring a PANI-doped silk fabric generated the highest output voltage of 257.68 V and a current of 5.36 μA, respectively. Additionally, the PT-TENG exhibits mechanical durability and electrical stability during continuous 7000 cyclic operations. Furthermore, the PT-TENG showcases practical applications such as charging commercial capacitors, powering green LEDs and smartwatches, and as a self-powered touch sensor. Thus, the PT-TENG offers a facile fabrication process and robustness, highlighting its potential for sustainable energy harvesting in wearable electronics.

Abstract Image

基于聚苯胺掺杂纺织品的摩擦纳米发电机:可穿戴电子设备的自供电装置
现代生活方式中可穿戴电子产品的出现刺激了对能够利用生物机械能的智能织物的需求。在本研究中,设计了一种柔性的聚苯胺掺杂纺织品摩擦电纳米发电机(PT-TENG),用于收集低频机械振动并将其转化为电能。在器件制造中,将五种不同的纺织织物掺杂导电聚苯胺,聚苯胺作为摩擦正材料,聚氯乙烯薄膜作为摩擦负材料,铝箔作为电极。PT-TENG工作在垂直接触分离模式,设计为拱形结构,使工作层之间容易和完全接触。有趣的是,该器件的最高输出电压为257.68 V,电流为5.36 μA。此外,PT-TENG在连续7000次循环操作中表现出机械耐久性和电气稳定性。此外,PT-TENG还展示了实际应用,如为商用电容器充电,为绿色led和智能手表供电,以及作为自供电触摸传感器。因此,PT-TENG提供了一个简单的制造过程和坚固性,突出了其在可穿戴电子产品中可持续能量收集的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信