Applied Research最新文献

筛选
英文 中文
Phase Transformation From Amorphous to Crystalline in MoS2 Nanosheets Prepared via Desulfurization of MoS3: Investigation of Optical and Structural Properties 二硫化钼脱硫制备的二硫化钼纳米片从非晶到晶的相变:光学和结构性质研究
Applied Research Pub Date : 2025-07-13 DOI: 10.1002/appl.70026
Rahim Lotfi Orimi, Ensieh Esfandyari
{"title":"Phase Transformation From Amorphous to Crystalline in MoS2 Nanosheets Prepared via Desulfurization of MoS3: Investigation of Optical and Structural Properties","authors":"Rahim Lotfi Orimi,&nbsp;Ensieh Esfandyari","doi":"10.1002/appl.70026","DOIUrl":"https://doi.org/10.1002/appl.70026","url":null,"abstract":"<div>\u0000 \u0000 <p>This study reports the synthesis of amorphous and polycrystalline molybdenum disulfide (MoS<sub>2</sub>) nanostructures. Amorphous MoS<sub>2</sub> nanoparticles were synthesized by desulfurizing MoS<sub>3</sub> under hydrazine vapor at 360°C. Polycrystalline nanosheets were obtained by annealing at 800°C. For comparison, crystalline MoS<sub>2</sub> nanoparticles were also synthesized via a hydrothermal method. The structural and optical properties were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), photoluminescence (PL), and UV-visible spectroscopy. UV-visible analysis revealed a decrease in the bandgap energy from approximately 2.4 to 2.0 eV, attributed to the change in synthesis method. Annealing significantly influenced the crystallographic and optical properties of MoS<sub>2</sub>. The initial desulfurized MoS<sub>3</sub> sample exhibited an amorphous structure, while both the annealed and hydrothermally prepared samples showed a polycrystalline structure.</p></div>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"4 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.70026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144614994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile Planetary Ball Mill Synthesis, Structural and Ferroelectric Properties in Nanostructured BaTiO3–SrTiO3–KNbO3 for Energy Storage Applications 纳米BaTiO3-SrTiO3-KNbO3储能材料的制备、结构和铁电性能
Applied Research Pub Date : 2025-07-08 DOI: 10.1002/appl.70024
S. A. Helmy, Ahmed E. Hannora, F. F. Hanna, D. E. El Refaay, M. M. El-Desoky
{"title":"Facile Planetary Ball Mill Synthesis, Structural and Ferroelectric Properties in Nanostructured BaTiO3–SrTiO3–KNbO3 for Energy Storage Applications","authors":"S. A. Helmy,&nbsp;Ahmed E. Hannora,&nbsp;F. F. Hanna,&nbsp;D. E. El Refaay,&nbsp;M. M. El-Desoky","doi":"10.1002/appl.70024","DOIUrl":"https://doi.org/10.1002/appl.70024","url":null,"abstract":"<div>\u0000 \u0000 <p>The ternary nanostructured 0.39BaTiO<sub>3</sub>–0.31SrTiO<sub>3</sub>–0.30KNbO<sub>3</sub> mol% (BKS) system was prepared via the mechanical milling technique. The composite powders were ball milled for durations of 0.5, 5, 10, and 20 h to facilitate the synthesis of nanostructured materials. XRD at ambient temperature for these nanostructured materials was precisely examined across varying ball milling durations. The characterization and identification of BKS were carried out using FTIR and HRTEM at a milling time 20 h. HRTEM verified the nanoparticle formation, and the mean size of the particles is estimated to be ~13.07 nm. The dielectric parameters were systematically plotted in relation to temperature at varying frequencies. The sample exhibited a wide and dispersed peak at the temperature-dependent dielectric permittivity <i>ɛ</i>′ (<i>T</i>) and loss tangent, as the temperature increased alongside the measuring frequency, indicative of the typical relaxor ferroelectric behavior. Electrical conduction properties of the synthesized BKS were measured through (AC) electrical conductivity at various temperatures. Moreover, the relaxor ferroelectric characteristics evidenced by a <i>P</i>–<i>E</i> hysteresis loop indicate an energy-recovered storage density (<i>W</i><sub>rec</sub> = 13.40 mJ/cm³) and efficiency of about (<i>η</i> = 79%) at 333 K. These findings propose that the nanostructured BKS sample may serve as an applicable candidate for energy preservation technologies.</p></div>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"4 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.70024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144581963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image: Volume 4 Issue 4 封面图片:第四卷第四期
Applied Research Pub Date : 2025-07-01 DOI: 10.1002/appl.70025
{"title":"Cover Image: Volume 4 Issue 4","authors":"","doi":"10.1002/appl.70025","DOIUrl":"https://doi.org/10.1002/appl.70025","url":null,"abstract":"<p><i>Applied Research</i> is a multidisciplinary journal that focuses on bridging fundamental research and practical applications, supporting sustainable problem-solving and global initiatives. The journal covers high-quality research in fields such as Materials,A pplied Physics, Chemistry, Applied Biology, Food Science, Engineering, Biomedical Sciences, and Social Sciences. Authors can submit various article types, including Reviews, Tutorials, and Research Articles. The journal aims to highlight innovative research that demonstrates the application of knowledge, methods, instrumentation, and technology into solutions.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"4 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.70025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144520062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Frequent Subgraph Mining for Dynamic Network Graphs Using Golden Dung Graph Hybridization 基于金粪图杂交的动态网络图频繁子图高效挖掘
Applied Research Pub Date : 2025-06-06 DOI: 10.1002/appl.70019
Naga Mallik Atcha, Jagannadha Rao D B, Vijayakumar Polepally
{"title":"Efficient Frequent Subgraph Mining for Dynamic Network Graphs Using Golden Dung Graph Hybridization","authors":"Naga Mallik Atcha,&nbsp;Jagannadha Rao D B,&nbsp;Vijayakumar Polepally","doi":"10.1002/appl.70019","DOIUrl":"https://doi.org/10.1002/appl.70019","url":null,"abstract":"<div>\u0000 \u0000 <p>Frequent subgraph mining (FSM) is one of the most critical procedures for mining meaningful patterns in large and dynamic graph datasets, common in several applications, such as social networks and biological data analysis. Traditional FSM methods are developed primarily with static graphs in mind and, thus, are inefficient when applied to dynamic data, especially data that updates continuously. This paper provides a novel framework of efficient FSM for dynamic network graphs with the support of a four-phase approach involving preprocessing, map, shuffle, and sort, and reduce phases. The hybrid optimization approach developed is known as Golden Dung Graph Hybridization (GDGH) and is a synchronization of Dung Beetle Optimization Algorithm and Golden Jackal Optimization Algorithm to optimize subgraph selection. For subgraph embedding and isomorphism testing, we further conduct a comparative study of several message-passing neural networks. Furthermore, this study conducts extensive experiments on several datasets that show significant superiority over the existing FSM methods in processing time, memory efficiency, and accuracy to demonstrate the efficacy of the proposed framework.</p></div>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"4 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.70019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144219932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Numerical Study on Enhancing Silicon Solar Cell Efficiency via the Integration of AgInSe2 集成AgInSe2提高硅太阳能电池效率的数值研究
Applied Research Pub Date : 2025-06-04 DOI: 10.1002/appl.70022
Kevin Gurbani Beepat, Davinder Pal Sharma, Dinesh Pathak, Vinod Kumar
{"title":"A Numerical Study on Enhancing Silicon Solar Cell Efficiency via the Integration of AgInSe2","authors":"Kevin Gurbani Beepat,&nbsp;Davinder Pal Sharma,&nbsp;Dinesh Pathak,&nbsp;Vinod Kumar","doi":"10.1002/appl.70022","DOIUrl":"https://doi.org/10.1002/appl.70022","url":null,"abstract":"<div>\u0000 \u0000 <p>The material AgInSe<sub>2</sub> (AIS) has garnered much attention for the improvement of the power conversion efficiency in solar cells in recent years. To understand how AIS affects the structure of silicon (Si) solar cells, this study numerically compared Si solar cells to Si/AIS solar cell structures using COMSOL Multiphysics. It was discovered that adding AIS to Si improved the shunt resistance, which increased the open-circuit voltage (V<sub>OC</sub>) and marginally increased the short-circuit current density (J<sub>SC</sub>). The entire effect caused the efficiency to rise from 10.12% to 11.04% with the final structure having a J<sub>SC</sub>, V<sub>OC</sub> and fill factor of 18.78 mA/cm<sup>2</sup>, 0.694 V and 0.846 respectively. The results indicate that the AIS layer might be crucial to producing extremely efficient solar cells, by improving its shunt resistance. It was also investigated how heating effects occur within the solar cells. Joule heating was discovered to occur at the locations of the p-n junctions, whereas non-radiative recombination heating was found to happen within the first 5 μm of the solar cell. Studying the heating effects inside the cell is crucial to limiting them and enhancing the cell's operational performance. Based on the results gained from this study, AIS can be suggested as an influential material for achieving higher efficiencies within Si solar cells and may therefore provide an effective strategy and source for the manufacture of high-performance solar cells.</p></div>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"4 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.70022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144206931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum Tribology: Harnessing Nanoscale Quantum Effects for Superior Friction Control 量子摩擦学:利用纳米级量子效应进行卓越的摩擦控制
Applied Research Pub Date : 2025-06-04 DOI: 10.1002/appl.70023
Alberto Boretti
{"title":"Quantum Tribology: Harnessing Nanoscale Quantum Effects for Superior Friction Control","authors":"Alberto Boretti","doi":"10.1002/appl.70023","DOIUrl":"https://doi.org/10.1002/appl.70023","url":null,"abstract":"<div>\u0000 \u0000 <p>The study of friction, wear, and lubrication – traditionally governed by classical physics – is undergoing a transformation with the emergence of quantum tribology, a field where quantum mechanical effects play a pivotal role in surface interactions at the nanoscale. Phenomena such as quantum tunneling, electron–phonon coupling, electron transfer, modifications in atomic orbital interactions, and van der Waals interactions significantly influence tribological behavior, presenting both challenges and opportunities for materials science and engineering. This review explores recent breakthroughs in quantum tribology, including graphene-based lubricants, doped diamond-like carbon coatings, nanoparticle-enhanced coatings, phototribology, structural superlubricity, and self-healing films, which offer promising avenues for reducing energy dissipation and material wear. By leveraging quantum effects, these advancements have the potential to enhance the performance and longevity of tribological systems in industries such as microelectronics, automotive, aerospace, power generation, and nanomanufacturing. Despite these strides, critical hurdles remain, including the need for advanced computational models capable of capturing the intricate quantum mechanisms and experimental techniques capable of capturing and validating quantum-driven tribological phenomena at relevant scales. Addressing these challenges will unlock new frontiers in ultra-low friction technologies, paving the way for more efficient and durable materials working at the atomic and molecular scales.</p></div>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"4 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.70023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144213953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wavelet-Enhanced Deformable Convolutional Network for Breast Cancer Classification in High-Resolution Histopathology Images 小波增强的可变形卷积网络在高分辨率组织病理图像中用于乳腺癌分类
Applied Research Pub Date : 2025-05-29 DOI: 10.1002/appl.70021
Albert Dede, Henry Nunoo-Mensah, Emmanuel Kofi Akowuah, Kwame Osei Boateng, Iddrisu Danlard, Prince Ebenezer Adjei, Francisca Adoma Acheampong, Jerry John Kponyo
{"title":"Wavelet-Enhanced Deformable Convolutional Network for Breast Cancer Classification in High-Resolution Histopathology Images","authors":"Albert Dede,&nbsp;Henry Nunoo-Mensah,&nbsp;Emmanuel Kofi Akowuah,&nbsp;Kwame Osei Boateng,&nbsp;Iddrisu Danlard,&nbsp;Prince Ebenezer Adjei,&nbsp;Francisca Adoma Acheampong,&nbsp;Jerry John Kponyo","doi":"10.1002/appl.70021","DOIUrl":"https://doi.org/10.1002/appl.70021","url":null,"abstract":"<div>\u0000 \u0000 <p>The limitations of deep learning methods in processing high-resolution inputs can impact the accuracy and efficiency of their results. This study presents a new architectural framework that combines wavelet-based preprocessing with deformable convolutional networks to classify high-resolution histopathological images. Our methodology utilizes multi-resolution wavelet decomposition for efficient feature extraction which maintains diagnostically significant information. This improvement is augmented by deformable convolutions, which improve robustness against geometric transformations of the inputs. Empirical evaluation on the BreaKHis data set shows an image-level accuracy of 96.47% and a patient-level accuracy of 96.55% at 200× magnification. The architecture consistently performs well across different magnification levels, with particular efficiency at higher resolutions where detailed morphological features are essential for accurate diagnosis. Ablation studies support our key architectural contributions, including reduced computational complexity through wavelet-based feature extraction, improved geometric invariance via deformable convolutions, and better classification performance than conventional methods. These findings suggest significant potential for improving diagnostic workflows in clinical settings where pathological expertise may be limited.</p></div>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"4 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.70021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144171729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Additive Manufacture of Architected Short Fiber Reinforced Composites 结构短纤维增强复合材料的设计与增材制造
Applied Research Pub Date : 2025-05-20 DOI: 10.1002/appl.70020
Yiran Guo, Arijit Pradhan, Petra Jonson, Narasimha Boddeti
{"title":"Design and Additive Manufacture of Architected Short Fiber Reinforced Composites","authors":"Yiran Guo,&nbsp;Arijit Pradhan,&nbsp;Petra Jonson,&nbsp;Narasimha Boddeti","doi":"10.1002/appl.70020","DOIUrl":"https://doi.org/10.1002/appl.70020","url":null,"abstract":"<p>We present an efficient multiscale design to additive manufacture workflow for architected short fiber reinforced composites, that is, composites with tailored spatially varying, complex arrangement of fibers for improved performance. Our workflow encompasses: (1) multiscale topology optimization (MTO), (2) a unique dehomogenization algorithm, and (3) robotic additive manufacturing. Specifically, we used homogenization based MTO, which enables computationally efficient simultaneous optimization of the macroscale structure and the architected fiber microstructure. We devised a dehomogenization method based on the <i>stripe patterns</i> algorithm to translate the optimized designs into manufacturable print plans, while ensuring minimal deviations, for material extrusion additive manufacturing processes. We adapted this manufacturing approach to process short carbon fiber reinforced epoxy on both 3-DoF (degrees of freedom) Cartesian robots and 6-DoF robotic arms, two widely used robots for additive manufacturing. We demonstrated the workflow's efficacy through design and manufacture of a planar tensile structure and a nonplanar spherical shell, with mechanical tests on the additively manufactured optimized structures agreeing well with numerical predictions.</p>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"4 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.70020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144100534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reviewing Ferroelectric Nematic Liquid Crystals: From Fundamental Properties to Cutting-Edge Applications 回顾铁电向列液晶:从基本性质到前沿应用
Applied Research Pub Date : 2025-05-19 DOI: 10.1002/appl.70018
Raj Kumar Khan
{"title":"Reviewing Ferroelectric Nematic Liquid Crystals: From Fundamental Properties to Cutting-Edge Applications","authors":"Raj Kumar Khan","doi":"10.1002/appl.70018","DOIUrl":"https://doi.org/10.1002/appl.70018","url":null,"abstract":"<div>\u0000 \u0000 <p>Ferroelectric nematic (N<sub>F</sub>) liquid crystals (LCs) have garnered substantial interest due to their unique polar ordering, phase transitions, and electro-optic (E-O) properties, with potential applications spanning from low-power reflective displays to advanced photonics and microfluidics. This review explores the multifaceted nature of N<sub>F</sub> LCs and comprehensively analyzes their phase behavior, alignment, and surface interactions. Notable findings include the nematic (N)-N<sub>F</sub> phase transition's weak first-order nature, surface treatments' role in inducing polar order, and meron-like structures resembling ferromagnetic domains. Furthermore, the review highlights the tunability of N<sub>F</sub> LCs under electric fields, offering exciting possibilities for adaptive optics, sensors, and actuators. Despite these advancements, challenges remain in optimizing molecular alignment, controlling defects, and expanding the scalability of N<sub>F</sub> LC technologies. By addressing key experimental and theoretical studies, this review aims to present a deeper understanding of N<sub>F</sub> liquid crystals' E-O responses, phase transitions, and their potential to revolutionize future LC-based technologies.</p></div>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"4 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.70018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144091689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualization Analysis and Impedance Analysis for the Aging Behavior Assessment of 18650 Cells 18650电池老化行为评价的可视化分析与阻抗分析
Applied Research Pub Date : 2025-05-12 DOI: 10.1002/appl.70015
Yihan Shi, Qingrui Pan, Jitao Li, Xiaoze Shi, Youchang Wang, Peng Xiao
{"title":"Visualization Analysis and Impedance Analysis for the Aging Behavior Assessment of 18650 Cells","authors":"Yihan Shi,&nbsp;Qingrui Pan,&nbsp;Jitao Li,&nbsp;Xiaoze Shi,&nbsp;Youchang Wang,&nbsp;Peng Xiao","doi":"10.1002/appl.70015","DOIUrl":"https://doi.org/10.1002/appl.70015","url":null,"abstract":"<div>\u0000 \u0000 <p>This work presents a comprehensive study on the aging behavior of 18650-type lithium-ion batteries, focusing on the uneven intercalation of lithium ions during fast charging processes. It introduces a novel approach using color visual recognition technology to analyze color changes in the graphite anode, indicative of lithiation levels. The study employs X-ray diffraction (XRD) and distribution of relaxation time (DRT) techniques to validate and analyze the observations. The study emphasizes the significance of electrode impedance, the positioning of battery tabs, and electrolyte distribution in influencing the aging dynamics of lithium-ion batteries. Furthermore, the paper presents an innovative impedance Transport-Line Model, specifically developed to capture the evolution of polarization impedance over time. This model offers a deeper understanding of the internal mechanisms driving battery aging, providing valuable insights for the design and optimization of lithium-ion batteries. The research represents a significant contribution to the field, shedding light on the complex aging processes in lithium-ion batteries, particularly under the conditions of fast charging. This could lead to improved battery performance, longevity, and safety, which are critical for the wide range of applications that depend on these energy storage systems.</p></div>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"4 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.70015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143938715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信