Phase Transformation From Amorphous to Crystalline in MoS2 Nanosheets Prepared via Desulfurization of MoS3: Investigation of Optical and Structural Properties

Rahim Lotfi Orimi, Ensieh Esfandyari
{"title":"Phase Transformation From Amorphous to Crystalline in MoS2 Nanosheets Prepared via Desulfurization of MoS3: Investigation of Optical and Structural Properties","authors":"Rahim Lotfi Orimi,&nbsp;Ensieh Esfandyari","doi":"10.1002/appl.70026","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study reports the synthesis of amorphous and polycrystalline molybdenum disulfide (MoS<sub>2</sub>) nanostructures. Amorphous MoS<sub>2</sub> nanoparticles were synthesized by desulfurizing MoS<sub>3</sub> under hydrazine vapor at 360°C. Polycrystalline nanosheets were obtained by annealing at 800°C. For comparison, crystalline MoS<sub>2</sub> nanoparticles were also synthesized via a hydrothermal method. The structural and optical properties were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), photoluminescence (PL), and UV-visible spectroscopy. UV-visible analysis revealed a decrease in the bandgap energy from approximately 2.4 to 2.0 eV, attributed to the change in synthesis method. Annealing significantly influenced the crystallographic and optical properties of MoS<sub>2</sub>. The initial desulfurized MoS<sub>3</sub> sample exhibited an amorphous structure, while both the annealed and hydrothermally prepared samples showed a polycrystalline structure.</p></div>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"4 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.70026","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/appl.70026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study reports the synthesis of amorphous and polycrystalline molybdenum disulfide (MoS2) nanostructures. Amorphous MoS2 nanoparticles were synthesized by desulfurizing MoS3 under hydrazine vapor at 360°C. Polycrystalline nanosheets were obtained by annealing at 800°C. For comparison, crystalline MoS2 nanoparticles were also synthesized via a hydrothermal method. The structural and optical properties were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), photoluminescence (PL), and UV-visible spectroscopy. UV-visible analysis revealed a decrease in the bandgap energy from approximately 2.4 to 2.0 eV, attributed to the change in synthesis method. Annealing significantly influenced the crystallographic and optical properties of MoS2. The initial desulfurized MoS3 sample exhibited an amorphous structure, while both the annealed and hydrothermally prepared samples showed a polycrystalline structure.

二硫化钼脱硫制备的二硫化钼纳米片从非晶到晶的相变:光学和结构性质研究
本文报道了非晶和多晶二硫化钼(MoS2)纳米结构的合成。采用水合肼蒸汽在360℃下对MoS3进行脱硫的方法合成了非晶态MoS2纳米颗粒。在800℃下退火得到多晶纳米片。为了比较,还通过水热法合成了结晶型二硫化钼纳米颗粒。利用x射线衍射(XRD)、场发射扫描电镜(FESEM)、能量色散x射线能谱(EDX)、光致发光(PL)和紫外可见光谱对其结构和光学性质进行了表征。紫外-可见分析显示,由于合成方法的改变,带隙能量从大约2.4 eV下降到2.0 eV。退火对二硫化钼的晶体学和光学性能有显著影响。初始脱硫的MoS3样品为非晶结构,而退火和水热制备的样品均为多晶结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信