Shreyas Ramanagar Sridhara , Antonio Andreini , Marc D. Polanka , Myles D. Bohon
{"title":"The impact of film cooling on the heat release within a rotating detonation combustor","authors":"Shreyas Ramanagar Sridhara , Antonio Andreini , Marc D. Polanka , Myles D. Bohon","doi":"10.1016/j.jaecs.2024.100300","DOIUrl":"10.1016/j.jaecs.2024.100300","url":null,"abstract":"<div><div>Rotating detonation combustors establish a detonation wave that continuously circulates inside a small annulus. The presence of the detonation wave and the downstream oblique shock within the small annulus coupled with high mass flow induces a high heat load to the combustor wall. Preliminary analysis shows that for higher thermal power, internal air cooling alone is not sufficient to remove the heat out of the walls to maintain them below the maximum temperature of the metal. A possible solution is to use film cooling to reduce the heat flux to the combustor walls. One issue, though, is that the introduction of film cooling provides additional air into the system that can influence the combustion process as well as providing a location for secondary combustion.</div><div>This paper represents the first investigation to study the secondary implications on combustion of using film cooling in a rotating detonation combustor. The TU Berlin RDC architecture was modified with the introduction of 480 film cooling holes placed in the oblique shock region. High fidelity LES investigations were performed for different coolant plenum pressures to show the benefits of using film cooling. However, due to the presence of unburnt fuel in this post-detonation region, the coolant can result in additional combustion leading to an increase in temperature near the wall. One the one hand, these secondary reactions result in an increase of the overall heat release increasing combustion efficiency, however this also results in higher temperatures and reduced film cooling effectiveness. A simulation performed with nitrogen as a coolant enabled the effects of increased mixing caused by the ejection of coolant gases to be separated from the additional heat release. The simulation with nitrogen shows a reduction of 88% in the local heat release in the post detonation region resulting in similar performance as the uncooled case and significantly cooler walls.</div></div>","PeriodicalId":100104,"journal":{"name":"Applications in Energy and Combustion Science","volume":"20 ","pages":"Article 100300"},"PeriodicalIF":5.0,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thimo van den Berg, Rishikesh Sampat, Arvind Gangoli Rao
{"title":"Flow field and emission characterization of a novel enclosed jet-in-hot-coflow canonical burner","authors":"Thimo van den Berg, Rishikesh Sampat, Arvind Gangoli Rao","doi":"10.1016/j.jaecs.2024.100298","DOIUrl":"10.1016/j.jaecs.2024.100298","url":null,"abstract":"<div><div>The jet-in-hot-coflow is a canonical combustion setup, which has been used in several studies to study Flameless/MILD combustion and auto-ignition of fuels. However, the NO<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span> and CO emission measurements from these combustion setups were not possible due to the entrainment of laboratory air and a lack of a well-defined physical system limit. These limitations have been overcome by a new enclosed jet-in-hot-coflow setup. The combustor was operated by injecting a mixture of CH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>-Air in the central jet, and the coflow comprised of hot products from CH<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>-Air combustion in burners upstream. The coflow composition was further controlled by adding diluents such as N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Measurements were done using stereoscopic particle image velocimetry, suction probe gas analysis, thermocouples, and chemiluminescence imaging. Increasing central jet velocity and equivalence ratio led to lower NO<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span> and a reaction zone that enlarged and shifted downstream. The reduction in NO<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span> emission was attributed to the returning mechanism. Adding CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> as diluents in the coflow resulted in a longer combustion zone and reduced temperatures in the combustion chamber, leading to decreased NO<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span> production and increased reburning. These experiments provide relevant flowfield and emissions data for modelers and help characterize combustion regimes such as Flameless/MILD.</div></div>","PeriodicalId":100104,"journal":{"name":"Applications in Energy and Combustion Science","volume":"20 ","pages":"Article 100298"},"PeriodicalIF":5.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Valentin Scharl , Karl Oskar Pires Bjørgen , David Robert Emberson , Terese Løvås
{"title":"Investigation of fuel temperature and injection timing effects on ammonia direct injection in an optical engine","authors":"Valentin Scharl , Karl Oskar Pires Bjørgen , David Robert Emberson , Terese Løvås","doi":"10.1016/j.jaecs.2024.100299","DOIUrl":"10.1016/j.jaecs.2024.100299","url":null,"abstract":"<div><div>This work investigates the effects of fuel temperature and injection timing on ammonia direct injection in an optical engine using a multi-hole injector. Flash-boiling may occur over various engine-relevant conditions due to ammonia’s high vapor pressure. This phenomenon impacts spray characteristics and, in severe cases, facilitates cavitation inside the nozzle. Both fuel temperature and injection timing (i.e., ambient conditions during injection) impact the intensity of flash-boiling during fuel injection. Therefore, this work varies fuel temperature (from <span><math><mrow><mn>320</mn><mspace></mspace><mi>K</mi></mrow></math></span> to <span><math><mrow><mn>388</mn><mspace></mspace><mi>K</mi></mrow></math></span>) and injection timing (from <span><math><mrow><mo>−</mo><mn>60</mn><mspace></mspace><mi>CAD</mi><mspace></mspace><mi>aTDC</mi></mrow></math></span> (crank angle degrees after top dead center) to <span><math><mrow><mo>−</mo><mn>6</mn><mspace></mspace><mi>CAD</mi><mspace></mspace><mi>aTDC</mi></mrow></math></span>) to assess their impact on injection mass flux, discharge coefficients, and macroscopic spray characteristics using an ammonia injection pressure of <span><math><mrow><mn>200</mn><mspace></mspace><mi>bar</mi></mrow></math></span>. For this purpose, the injection mass is measured by analyzing exhaust gas compositions during engine operation with ammonia injections but without combustion. In addition, diffuse background illumination (DBI) images capture the liquid phase of the fuel spray to characterize spray behavior. The findings reveal that increasing fuel temperature decreases ammonia’s injection mass by up to 12.8% but has little impact on discharge coefficients for late injection timings and high in-cylinder pressures. However, discharge coefficients decrease by up to 17.4% (from 0.58 to 0.48) for early injection timings if fuel temperatures are high. The individual sprays of the 6-hole GDI injector may collapse into a uniform spray at high-density conditions without flash-boiling or under strongly flash-boiling conditions. The findings clarify the impact of ammonia’s high vapor pressure on injection mass and prove the relevance of different spray collapse mechanisms in ammonia direct injection engines.</div></div>","PeriodicalId":100104,"journal":{"name":"Applications in Energy and Combustion Science","volume":"20 ","pages":"Article 100299"},"PeriodicalIF":5.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francesco Di Sabatino, Brian J. Connolly, Owen M. Pryor, Steve H. White
{"title":"Perspectives on oxy-fuel combustion for supercritical CO2 direct-fired power cycle","authors":"Francesco Di Sabatino, Brian J. Connolly, Owen M. Pryor, Steve H. White","doi":"10.1016/j.jaecs.2024.100297","DOIUrl":"10.1016/j.jaecs.2024.100297","url":null,"abstract":"<div><div>This paper explores the potential of oxy-fuel direct-fired supercritical carbon dioxide (sCO<sub>2</sub>) power cycles, proposing them as a promising strategy towards achieving near-total carbon capture while utilizing existing fossil fuels. It offers insights into the future of CO<sub>2</sub>- and sCO<sub>2</sub>-diluted combustion science and combustor design, supported by a review of the current state of the art. The paper is divided into four sections: chemical kinetics and the development of chemical mechanisms, numerical simulations tools, combustion and laser ignition experimental efforts, and the current state of the art and perspectives of combustor design efforts. The paper underscores the need for additional experimental measurements to validate chemical mechanisms, numerical simulations, and combustor design to advance understanding of CO<sub>2</sub> and sCO<sub>2</sub>-diluted combustion science. The authors advocate for increased collaboration within the scientific community and the development of standardized lab-scale burners and combustor geometries to facilitate comparison and validation as well as reduce development costs. The paper emphasizes that significant research and development efforts are crucial to ensuring the safety, reliability, and efficiency of CO<sub>2</sub> and sCO<sub>2</sub>-diluted combustion processes and combustor design. The knowledge and strategies applicable to conventional gas turbines may not directly transfer to sCO<sub>2</sub> cycles, necessitating dedicated research efforts to advance this promising technology towards widespread adoption.</div></div>","PeriodicalId":100104,"journal":{"name":"Applications in Energy and Combustion Science","volume":"20 ","pages":"Article 100297"},"PeriodicalIF":5.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Petra Weinbrecht, Björn Stelzner, Peter Habisreuther, Christof Weis, Dimosthenis Trimis
{"title":"Experimental investigation of irradiance from combustion in porous media with different geometries","authors":"Petra Weinbrecht, Björn Stelzner, Peter Habisreuther, Christof Weis, Dimosthenis Trimis","doi":"10.1016/j.jaecs.2024.100294","DOIUrl":"10.1016/j.jaecs.2024.100294","url":null,"abstract":"<div><div>Radiant porous burners with a high power density, emitting intense radiation were investigated. Different geometrical structures were applied as porous inlay in a state-of-the-art, two-layer porous burner with a rectangular shape. Structures were made of SiSiC and manufactured by the replica method using foaming and hybrid additive manufacturing. Subject to the study were foam structures as well as lattice structures with random strut distribution based on the Voronoi tessellation and with regular distribution based on the Kelvin and Hendecahedron cell geometry. The structures were designed with the intention of enhancing the irradiation by optimising the specific surface area distribution along the flow direction. The additive manufacturing method enables this through a local increase in pore density and the implementation of additional surfaces. Image processing was used to demonstrate the effectiveness of this approach and to characterise the structures in specific surface areas. Volume averaged values and distribution along the thickness were analysed. The radiation efficiency was derived from measurements of the radiation intensity on discrete points in parallel to the radiating surface using a radiometer. The burner was operated with methane as fuel at a specific burner power in the range of 600<!--> <!-->kW<!--> <!-->m<sup>−2</sup> to 1000<!--> <!-->kW<!--> <!-->m<sup>−2</sup> and an equivalence ratio of <span><math><mrow><mi>ϕ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>7</mn></mrow></math></span>. Measured radiation efficiency was compared to a limiting radiation efficiency obtained from theoretical calculations. Highest radiation efficiency was obtained for a foam structure with a specific surface area of 622<!--> <!-->m<sup>−1</sup>. Structures based on the geometry of a hendecahedron and a kelvin cell achieved comparable efficiencies. The lowest values were observed for a randomly distributed lattice structure with nominal pore density of 10 PPI. A relation between volume averaged specific surface area values and measured radiation efficiency is derived and proven. Additionally, efficiency could be improved by targeted surface area increase applying closed windows or a gradient in pore size respectively.</div></div>","PeriodicalId":100104,"journal":{"name":"Applications in Energy and Combustion Science","volume":"20 ","pages":"Article 100294"},"PeriodicalIF":5.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sebastian Valencia , Andres Mendiburu , Luis Bravo , Prashant Khare , Cesar Celis
{"title":"Flow-field analysis and performance assessment of rotating detonation engines under different number of discrete inlet nozzles","authors":"Sebastian Valencia , Andres Mendiburu , Luis Bravo , Prashant Khare , Cesar Celis","doi":"10.1016/j.jaecs.2024.100296","DOIUrl":"10.1016/j.jaecs.2024.100296","url":null,"abstract":"<div><div>This study explores in depth rotating detonation engines (RDEs) fueled by premixed stoichiometric hydrogen/air mixtures through two-dimensional numerical simulations including a detailed chemical kinetic mechanism. To model the spatial reactant non-uniformities observed in practical RDE combustors, the referred simulations incorporate different numbers of discrete inlet nozzles. The primary focus here is to analyze the influence of reactant non-uniformities on detonation combustion dynamics in RDEs. By systematically varying the number of reactant injection nozzles (from 15 to 240), while maintaining a constant total injection area, the study delves into how this variation influences the behavior of rotating detonation waves (RDWs) and the associated overall flow field structure. The numerical results obtained here reveal significant effects of the number of inlets employed on both RDE stability (self-sustaining detonation wave) and performance. RDE configurations with a lower number of inlets exhibit a detonation front with chaotic behavior (pressure oscillations) due to an increased amount of unburned gas ahead of the detonation wave. This chaotic behavior can lead to the flame extinguishing or decreasing in intensity, ultimately diminishing the engine's overall performance. Conversely, RDE configurations with a higher number of inlets feature smoother detonation propagations without chaotic transients, leading to more stable and reliable performance metrics. This study uses high-fidelity numerical techniques such as adaptive mesh refinement (AMR) and the PeleC compressible reacting flow solver. This comprehensive approach enables a thorough evaluation of critical RDE characteristics including detonation velocity, fuel mass flow rate, impulse, thrust, and reverse pressure waves under varying reactant injection conditions. The insights derived from the numerical simulations carried out here enhance the understanding of the fundamental processes governing the performance of RDE concepts.</div></div>","PeriodicalId":100104,"journal":{"name":"Applications in Energy and Combustion Science","volume":"20 ","pages":"Article 100296"},"PeriodicalIF":5.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Bellini , C. Rodriguez , I.K. Karathanassis , L. Pickett , M. Gavaises , E. Geber
{"title":"Modelling of wall-bounded cavitating flow and spray mixing in multi-component environments using the PC-SAFT equation of state","authors":"R. Bellini , C. Rodriguez , I.K. Karathanassis , L. Pickett , M. Gavaises , E. Geber","doi":"10.1016/j.jaecs.2024.100295","DOIUrl":"10.1016/j.jaecs.2024.100295","url":null,"abstract":"<div><div>This work introduces a numerical multiphase model for multi-component mixtures, utilizing tabulated data for physical and transport properties across a spectrum of conditions from near-vacuum pressures to supercritical states. The property data are derived using Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT), vapor-liquid equilibrium (VLE) calculations, entropy scaling methodologies, and Group Contribution (GC) methods. These techniques accurately reflect the thermodynamic behaviors of real fluids, avoiding the empirical estimation of Equation of State (EoS) input parameters. Implemented in OpenFOAM, the fluid dynamics solver is designed to address the three-dimensional Navier-Stokes equations for multi-component mixtures. The methodology integrates operator splitting to manage hyperbolic and parabolic steps distinctively. Hyperbolic terms are solved using the HLLC (Harten-Lax-van Leer-Contact) solver with temporal integration performed via a third-order Strong-Stability-Preserving Runge–Kutta (SSP-RK3) method. Viscous stress tensor contributions in the momentum equation are handled through an implicit velocity correction equation, while parabolic terms in the energy equation are explicitly solved. The simulation efficiency is further enhanced by adaptive Local Time Stepping and the Immersed Boundary (IB) method, which addresses interactions between the fluid and solid boundaries. Turbulence is resolved using the Wall Adaptive Large Eddy (WALE) model. Applied to high-pressure diesel fuel spray injections into non-reacting (nitrogen) gas environments, the model has been validated against Engine Combustion Network (ECN) data for the Spray-C configuration, featuring a fully cavitating multi-hole orifice. Results demonstrate that the model achieves accurate predictions across a broad range of tested conditions without the need for tuning or calibration parameters.</div></div>","PeriodicalId":100104,"journal":{"name":"Applications in Energy and Combustion Science","volume":"20 ","pages":"Article 100295"},"PeriodicalIF":5.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Including detailed chemistry features in the modeling of emerging low-temperature reactive flows: A review on the application to diluted and MILD combustion systems","authors":"Giancarlo Sorrentino , Giovanni Battista Ariemma , Federica Ferraro , Benoit Fiorina","doi":"10.1016/j.jaecs.2024.100291","DOIUrl":"10.1016/j.jaecs.2024.100291","url":null,"abstract":"<div><div>Developing and optimizing new reactive systems with carbon-neutral fuels like biofuels, e-fuel, hydrogen, or ammonia is crucial for sustainable energy. This requires advanced technologies capable of fuel flexibility, high efficiency, and minimal pollutant emissions. However, these energy carriers still produce pollutants, especially NOx. To address this, engineers aim to lower combustion process temperatures by adopting different strategies such as burned gas recirculation, staging or increasing the air-to-fuel ratio. Yet, lean flames, though effective at emission reduction, are prone to instability and extinction, posing safety and mechanical risks. Emerging technologies like MILD Combustion, based on burned gas recirculation and reactant dilutions offer interesting solutions. The review article begins by synthesizing experimental studies and numerical simulations of MILD turbulent combustion. It then explores fundamental phenomena specific to diluted combustion (where MILD regimes are included as sub-sets), including autoignition and flame propagation. Using high-fidelity simulations and advanced experiments, it examines flow and mixing roles in reactive zones stabilization. Moving forward, the review paper addresses the inclusion of detailed chemical properties in modeling turbulent combustion systems. Scientific challenges revolve around modeling the intricate interactions between combustion chemistry and flow turbulence while maintaining computational efficiency compatible with industrial constraints. To address this, various simplified chemistry methods – such as reduced, tabulated, or optimized chemistry – have been developed. Additionally, turbulence/chemistry coupling modeling remains unresolved in simulations, with three main routes – geometrical, statistical, or reactor-based approaches – available for turbulent combustion modeling. The state-of-the-art in simplified chemistry and turbulent combustion modeling for low-temperature regimes is then focused on capturing MILD regimes, where there is a crucial impact of dilution by burnt gases, heat transfer, and turbulence mixing on the chemical flame structure. Recent advancements enabled by machine learning and deep learning algorithms are also highlighted. Lastly, the article underscores the critical need for data to validate models, emphasizing the importance of scale-bridging experiments.</div></div>","PeriodicalId":100104,"journal":{"name":"Applications in Energy and Combustion Science","volume":"20 ","pages":"Article 100291"},"PeriodicalIF":5.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent progresses in research on liquid ammonia spray and combustion: A review","authors":"Zhenhua An, Jiangkuan Xing, Ryoichi Kurose","doi":"10.1016/j.jaecs.2024.100293","DOIUrl":"10.1016/j.jaecs.2024.100293","url":null,"abstract":"<div><div>As climate change intensifies, the global push for de-carbonization highlights the urgent need for carbon-free fuels. Ammonia (NH<sub>3</sub>), with zero carbon emissions and a notable ability as a hydrogen carrier (17.8 % by weight), has emerged as a promising candidate for a net-zero economy. Over the past decade, substantial research has been devoted to the combustion of gaseous ammonia. However, liquid ammonia has several key advantages over gaseous ammonia, including high energy density, cost efficiency, system simplicity, and a high octane number. Despite these benefits, challenges such as high NOx emissions, low combustion stability, significant latent heat, and susceptibility to flash boiling necessitate further exploration. This article comprehensively reviews the current state of research on liquid ammonia as a fuel, covering experimental and numerical efforts regarding fundamental fuel properties, spray characteristics, flame stabilization, combustion performance, and emissions. By systematically summarizing the recent advancements in liquid ammonia spraying and combustion, this review aims to serve as a cornerstone for future experimental and numerical studies and industrial applications, providing a reference for the research and utilization of liquid ammonia combustion.</div></div>","PeriodicalId":100104,"journal":{"name":"Applications in Energy and Combustion Science","volume":"20 ","pages":"Article 100293"},"PeriodicalIF":5.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An entrained flow biomass gasification technology with the fluidized bed concept for low-carbon fuel production","authors":"Keigo Matsumoto","doi":"10.1016/j.jaecs.2024.100292","DOIUrl":"10.1016/j.jaecs.2024.100292","url":null,"abstract":"<div><div>For accomplishing the vision of building of a net-emission zero society, low-carbon fuels such as e-fuel, Sustainable Aviation Fuel (SAF), and chemical products generation, plays a significant role. Especially, among the low carbon fuels, SAF is the most crucial. Ammonia and electric aircraft are under way as alternatives to fossil-derived jet fuel (kerosene). However, none of these have yet found their way to commercialization. Among the SAF production technology, biomass gasification and Fischer-Tropsch (FT) synthesis technology are one of the lowest CO<sub>2</sub> emission processes, according to Life Cycle Assessment (LCA) analysis. However, at present there are some issues about biomass grinding, tar, ash treatment, gas purification and wastewater. We, at Mitsubishi Heavy Industries (MHI) R&D laboratory have developed entrained bed gasification, adopting the fluidized bed concept in which biomass particles are recirculated in the gasifier without fluidizer. Principally desired outcomes of this development was to reduce the grinding power, simplify the structure by using atmospheric pressure process, and lower tar concentration while maintain suitable temperature to prevent ash from melting inside gasifier. Empirical and actual results showed that the developed gasifier can obtain high carbon conversion ratio and low tar as compared to the traditional gasification processes for low-carbon fuel production and produce reliably stable syngas for low-carbon fuel synthesis with single gasifier. Based on the pilot plant operation results, effectiveness of moderate (1223 – 1323 K) temperature gasification with this concept has been demonstrated too. As a conclusion, development needs and expectation of gasification technology for contributing to carbon neutral society are mentioned.</div></div>","PeriodicalId":100104,"journal":{"name":"Applications in Energy and Combustion Science","volume":"20 ","pages":"Article 100292"},"PeriodicalIF":5.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}