High-resolution numerical simulation of rotating detonation waves with parallel adaptive mesh refinement

IF 5 Q2 ENERGY & FUELS
Han Peng , Ralf Deiterding
{"title":"High-resolution numerical simulation of rotating detonation waves with parallel adaptive mesh refinement","authors":"Han Peng ,&nbsp;Ralf Deiterding","doi":"10.1016/j.jaecs.2024.100316","DOIUrl":null,"url":null,"abstract":"<div><div>Simulations of rotating detonation engines are still dominated by solvers on uniform or statically refined meshes. Here, simulations of premixed rotating detonation waves are conducted using the block-structured adaptive mesh refinement (SAMR) technique. The studied configurations include both a two-dimensional unrolled model with a discretely injected hydrogen-air mixture and a three-dimensional annular model with non-premixed and partially premixed hydrogen-air mixtures. The computations employ a generic solver within the parallel Cartesian adaptive mesh refinement framework AMROC, which has been extended to accommodate curvilinear meshes. A second-order accurate finite volume method for the Navier–Stokes equations is utilized, along with grid-aligned Riemann solvers for thermally perfect gas mixtures. Detailed, multi-step chemical kinetic mechanisms are employed and incorporated with a splitting approach. A study into mesh dependency is undertaken, providing an assessment of the influence of local mesh refinement and adaptation criteria on the simulation results. The analysis reveals the formation of a multi-wave structure and transient heat release patterns, indicating the presence of an irregular cellular structure with enhanced local heat release as the detonation propagates through the injection jets. The ability to resolve sub-scale phenomena down to the cellular structures, intrinsic to detonation propagation, demonstrates the benefit of the SAMR approach. Further simulations are conducted to investigate the effects of partial premixing on rotating detonation. Additionally, a workload distribution analysis demonstrates how the on-the-fly partition strategy in AMROC alleviates computational imbalances. Parallel scaling tests exhibit linear acceleration in solving rotating detonation engine problems, highlighting the efficiency of the parallel adaptive mesh refinement technique in capturing the primary features of these simulations.</div></div>","PeriodicalId":100104,"journal":{"name":"Applications in Energy and Combustion Science","volume":"21 ","pages":"Article 100316"},"PeriodicalIF":5.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Energy and Combustion Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666352X24000712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Simulations of rotating detonation engines are still dominated by solvers on uniform or statically refined meshes. Here, simulations of premixed rotating detonation waves are conducted using the block-structured adaptive mesh refinement (SAMR) technique. The studied configurations include both a two-dimensional unrolled model with a discretely injected hydrogen-air mixture and a three-dimensional annular model with non-premixed and partially premixed hydrogen-air mixtures. The computations employ a generic solver within the parallel Cartesian adaptive mesh refinement framework AMROC, which has been extended to accommodate curvilinear meshes. A second-order accurate finite volume method for the Navier–Stokes equations is utilized, along with grid-aligned Riemann solvers for thermally perfect gas mixtures. Detailed, multi-step chemical kinetic mechanisms are employed and incorporated with a splitting approach. A study into mesh dependency is undertaken, providing an assessment of the influence of local mesh refinement and adaptation criteria on the simulation results. The analysis reveals the formation of a multi-wave structure and transient heat release patterns, indicating the presence of an irregular cellular structure with enhanced local heat release as the detonation propagates through the injection jets. The ability to resolve sub-scale phenomena down to the cellular structures, intrinsic to detonation propagation, demonstrates the benefit of the SAMR approach. Further simulations are conducted to investigate the effects of partial premixing on rotating detonation. Additionally, a workload distribution analysis demonstrates how the on-the-fly partition strategy in AMROC alleviates computational imbalances. Parallel scaling tests exhibit linear acceleration in solving rotating detonation engine problems, highlighting the efficiency of the parallel adaptive mesh refinement technique in capturing the primary features of these simulations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信