Advanced Membranes最新文献

筛选
英文 中文
Swelling polymer-regulated green synthesis of flexible ZIF-8 membrane 膨胀聚合物调控的柔性ZIF-8膜的绿色合成
Advanced Membranes Pub Date : 2025-01-01 DOI: 10.1016/j.advmem.2025.100144
Hongyu Ma , Ruoxin Wang , Kaiqiang He , Yaoxin Hu , George P. Simon , Huanting Wang
{"title":"Swelling polymer-regulated green synthesis of flexible ZIF-8 membrane","authors":"Hongyu Ma ,&nbsp;Ruoxin Wang ,&nbsp;Kaiqiang He ,&nbsp;Yaoxin Hu ,&nbsp;George P. Simon ,&nbsp;Huanting Wang","doi":"10.1016/j.advmem.2025.100144","DOIUrl":"10.1016/j.advmem.2025.100144","url":null,"abstract":"<div><div>Metal-organic framework (MOF)-based membranes are promising for the development of high flux separation applications while maintaining high selectivities. Since pure MOF membranes typically suffer from brittleness, the fabrication of flexible MOF membranes with minimal defects and good mechanical strength is valuable. Herein, we report a swelling polymer-regulated method for the <em>in situ</em> green synthesis of a flexible zeolitic imidazolate framework-8 (ZIF-8) membrane for gas separation. By applying reactant solutions with different solvents in the contra-diffusion process, ZIF-8 particles were gradually grown with binding to alginate polymers. Moreover, the directional swelling of the composite layer allowed the selective layer to grow further into the pores of the substrate. This membrane demonstrated good structural integrity and mechanical stability whilst achieving an H<sub>2</sub> permeance of 6.81 ​× ​10<sup>−7</sup> ​mol ​m<sup>−2</sup> ​s<sup>−1</sup>·pa<sup>−1</sup> and an ideal H<sub>2</sub>/CH<sub>4</sub> selectivity of 24, which was able to retain its gas separation performance after 10 mild bends. This approach thus shows great potential for the further development of other flexible MOF membranes.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100144"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143807660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Size effect of porous filler in mixed matrix membranes for faster hydrogen permeation from methane-containing mixtures 混合基质膜中多孔填料对含甲烷混合物中氢更快渗透的尺寸效应
Advanced Membranes Pub Date : 2025-01-01 DOI: 10.1016/j.advmem.2025.100136
Yuebing Shen , Fanfan Jiang , Qian Liu , Zhiquan Chen , Kai Ge , Junfeng Bai , Jingui Duan
{"title":"Size effect of porous filler in mixed matrix membranes for faster hydrogen permeation from methane-containing mixtures","authors":"Yuebing Shen ,&nbsp;Fanfan Jiang ,&nbsp;Qian Liu ,&nbsp;Zhiquan Chen ,&nbsp;Kai Ge ,&nbsp;Junfeng Bai ,&nbsp;Jingui Duan","doi":"10.1016/j.advmem.2025.100136","DOIUrl":"10.1016/j.advmem.2025.100136","url":null,"abstract":"<div><div>One potential solution for the transport of hydrogen (H<sub>2</sub>) is the injection of hydrogen into natural gas pipelines. Therefore, it is imperative to develop an efficient purification technology. Membrane separation has great potential to meet this challenge due to its effective energy consumption and cost. Here, a series of mixed matrix membranes (MMMs) containing ZIF-71 fillers of different sizes are reported for faster H<sub>2</sub> permeation. The uniform distribution of nanosized ZIF-71 (0.1 ​μm) in 6FDA-DAM provides an attractive diffusion channel, allowing the membrane to show rapid H<sub>2</sub> permeation of 1050 Barrer and good H<sub>2</sub>/CH<sub>4</sub> separation factor of 43. This performance is markedly superior to that of the larger-sized ZIF-71 (1.0 ​μm and 3.5 ​μm) in 6FDA-DAM and the same-sized ZIF-71 (0.1 ​μm) in 6FDA-Durene and PEI, and also exceeds the upper bound. Moreover, the long-term stable H<sub>2</sub>/CH<sub>4</sub> separation suggests a high potential for practical applications. The findings here demonstrate the importance of the filler size, which has a strong influence on the formation of mass transfer channels, and also provide straightforward method for the development of high-performance MMMs.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100136"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143488712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrophobic DD3R modified by perfluorooctyl-trimethoxysilane incorporates into PEBAX membrane for ethanol recovery via pervaporation 经全氟辛基-三甲氧基硅烷修饰的疏水DD3R加入PEBAX膜,通过渗透蒸发回收乙醇
Advanced Membranes Pub Date : 2025-01-01 DOI: 10.1016/j.advmem.2025.100146
Chengyun Gao , Yuxuan Zhang , Junling Lin , Weijie Sun , Yangyang Wang , Fanhui Meng , Jiayou Liao , Xianjie Meng
{"title":"Hydrophobic DD3R modified by perfluorooctyl-trimethoxysilane incorporates into PEBAX membrane for ethanol recovery via pervaporation","authors":"Chengyun Gao ,&nbsp;Yuxuan Zhang ,&nbsp;Junling Lin ,&nbsp;Weijie Sun ,&nbsp;Yangyang Wang ,&nbsp;Fanhui Meng ,&nbsp;Jiayou Liao ,&nbsp;Xianjie Meng","doi":"10.1016/j.advmem.2025.100146","DOIUrl":"10.1016/j.advmem.2025.100146","url":null,"abstract":"<div><div>A novel class of mixed-matrix membranes was synthesized through strategic integration of Polyether-block-amide (PEBAX) with Deca-dodecasil 3R (DD3R) zeolitic fillers, targeting efficiency-driven ethanol recovery in pervaporation separation systems. The DD3R molecular sieve was synthesized using adamantylamine (ADA) as a structure-directing agent and Sigma-1 seed crystals in a pure silicon precursor system. To improve compatibility with the polymer matrix, the DD3R particles were surface-modified with a silane coupling agent. Comprehensive characterization through Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectra (XPS), Water Contact Angle (WCA), X-ray diffraction (XRD), swelling degree tests, and mechanical properties confirmed the successful bonding of the silane coupling agent to both DD3R and PEBAX. The optimized membrane containing 0.75 ​wt% DD3R achieved a flux of 1152.06 ​g/m<sup>2</sup>h and a separation factor of 4.52 ​at 60°C with a 5 ​wt% ethanol feed concentration, representing a 115 ​% enhancement in flux and a 68 ​% increase in separation factor compared to the pristine PEBAX membrane. Additionally, the PEBAX/DD3R membrane displayed excellent long-term stability. This work provided a foundation for developing membranes with DD3R incorporated therein for a wide range of liquid or gas mixture separation processes.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100146"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143937341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrospun amphiphilic sulfonated poly(ether-ether-ketone) (SPEEK) membranes for thin-layer crude oil spill cleanup 电纺丝两亲性磺化聚醚醚酮(SPEEK)薄膜用于薄层原油泄漏清理
Advanced Membranes Pub Date : 2025-01-01 DOI: 10.1016/j.advmem.2025.100160
Fuat Topuz , Zainah A. AlDhawi , Mahmoud A. Abdulhamid
{"title":"Electrospun amphiphilic sulfonated poly(ether-ether-ketone) (SPEEK) membranes for thin-layer crude oil spill cleanup","authors":"Fuat Topuz ,&nbsp;Zainah A. AlDhawi ,&nbsp;Mahmoud A. Abdulhamid","doi":"10.1016/j.advmem.2025.100160","DOIUrl":"10.1016/j.advmem.2025.100160","url":null,"abstract":"<div><div>Oil spills and the release of oily wastewater have caused serious damage to the environment and human health. Effective removal of oil spills and separation of oil/water mixtures have become a crucial step before they enter the environment and reveal their potentially harmful effects on aquatic ecology. In this context, herein, fibrous membranes based on sulfonated poly (ether-ether-ketone) (SPEEK) were produced and used for the adsorption of crude oils and their derivatives. PEEK was treated with H<sub>2</sub>SO<sub>4</sub> at different times, and the concentrated solutions of the SPEEK were electrospun into bead-free nanofibers. The contact angle measurements with water and oils (<em>i</em>.<em>e</em>., crude oils, diesel, and gasoline) demonstrated the amphiphilic nature of the membranes. Depending on the crude oil sample used and the degree of sulfonation (DoS) of SPEEK, the crude oil sorption capacities ranged from 9 to 80 ​g ​g<sup>−1</sup>, while the adsorption capacities for gasoline and diesel were measured as 3 and 13 ​g ​g<sup>−1</sup>, respectively. As the DoS increased, the oil adsorption capacity of fibrous membranes declined due to the increased hydrophilicity of the membranes. Due to their amphiphilic nature, the SPEEK membranes could effectively remove even a thin layer of oil on seawater, a task that is challenging for most hydrophobic adsorbents. Fibrous SPEEK membranes could be employed as low-cost solutions for oil spill remediation and oil-in-water separation.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100160"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144518962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly stable cation-exchange membranes for lithium recovery from acidic lithium ore leachate 从酸性锂矿渗滤液中回收锂的高稳定阳离子交换膜
Advanced Membranes Pub Date : 2025-01-01 DOI: 10.1016/j.advmem.2025.100155
Zheng Liu , Qiaoyun Ye , Qian Chen, Liang Ge, Xingya Li, Tongwen Xu
{"title":"Highly stable cation-exchange membranes for lithium recovery from acidic lithium ore leachate","authors":"Zheng Liu ,&nbsp;Qiaoyun Ye ,&nbsp;Qian Chen,&nbsp;Liang Ge,&nbsp;Xingya Li,&nbsp;Tongwen Xu","doi":"10.1016/j.advmem.2025.100155","DOIUrl":"10.1016/j.advmem.2025.100155","url":null,"abstract":"<div><div>Electrodialysis technology is widely deployed in the field of separation due to its simplicity of operation and sustainability, where ion-exchange membranes are the most critical components in this process. Traditional cation-exchange membranes are typically suitable for mild conditions and often suffer from issues such as poor stability and susceptibility. In this study, we design a novel cation-exchange membrane featuring a rigid backbone with sulfonic acid groups as side chains and fluorine-containing region. The resultant membrane exhibits high thermal stability, acid resistance, and oxidation resistance, without degradation of functional groups and decline in mechanical strength after treatment in 1 ​mol ​L<sup>−1</sup> HCl solution at 60 ​°C for over 1000 ​h. Moreover, its oxidation resistance in Fenton reagent at 80 ​°C surpasses that of commercial membranes. The Li<sup>+</sup> recovery ratio from acidic leach liquors of lithium ores can reach ∼99.6 ​% via the electrodialysis process, demonstrating the membrane as a candidate for lithium extraction in aggressive industrial scenarios.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100155"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144212208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endothelial bionic-modified anti-thrombotic PMP hollow fiber membranes for dual-circulation artificial uterus system 双循环人工子宫系统用内皮仿生改性抗血栓PMP中空纤维膜
IF 9.5
Advanced Membranes Pub Date : 2025-01-01 DOI: 10.1016/j.advmem.2025.100170
Xing Lv , Xiaoyun Wang , Xing Zhang , Yangming Cheng , Huiqin Zhang , Yong Mei , Xufeng Chen , Ting He , Zhaoliang Cui
{"title":"Endothelial bionic-modified anti-thrombotic PMP hollow fiber membranes for dual-circulation artificial uterus system","authors":"Xing Lv ,&nbsp;Xiaoyun Wang ,&nbsp;Xing Zhang ,&nbsp;Yangming Cheng ,&nbsp;Huiqin Zhang ,&nbsp;Yong Mei ,&nbsp;Xufeng Chen ,&nbsp;Ting He ,&nbsp;Zhaoliang Cui","doi":"10.1016/j.advmem.2025.100170","DOIUrl":"10.1016/j.advmem.2025.100170","url":null,"abstract":"<div><div>The Artificial Womb Technology (AWT) system is a piece of biomedical equipment that supports the in vitro development of extremely premature infants. The system draws fetal blood, oxygenates it, removes carbon dioxide (CO<sub>2</sub>), and then delivers it back to the fetus. This prevents the fetus from switching to a pulmonary breathing pattern prematurely, which provides critical time for lung tissue development. Researchers have utilized extracorporeal membrane oxygenation (ECMO) technology to provide the fetus with oxygen. In this study, we developed a new method using artificial blood instead of maternal blood in a liquid-liquid dual-circulation. Additionally, since preterm infants require greater blood compatibility and the oxygenated membrane must have anticoagulant properties, the membrane was modified to enhance hemocompatibility and anticoagulant properties. PMP membranes were functionalized with polydopamine (PDA), after which (3-(methacrylamido) propyl) dimethyl (3-thiopropyl) ammonium hydroxide inner salt (SPP) and fondaparinux sodium were successively grafted. Protein adsorption reached 18.3 ​μg/cm<sup>2</sup> (64.3 ​% reduction), while hemolysis rate dropped to 0.19 ​% (85.4 ​% reduction). The results confirm that the functionalized modified membrane not only meets the blood compatibility requirements of the dual-circulation system but also accurately replicates the recurrent process of fetal-maternal gas exchange through its biomimetic design, providing key technical support for the clinical translation of the AWT system.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100170"},"PeriodicalIF":9.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145120842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust positively charged polyurea nanofiltration membranes with acid resistance for efficient lithium extraction and recovery 坚固的带正电的聚脲纳滤膜,耐酸性,高效的锂提取和回收
Advanced Membranes Pub Date : 2025-01-01 DOI: 10.1016/j.advmem.2025.100134
Qin Shen , Mengmeng Fang , Wenshuo Cui , Chuanjie Fang , Zhikan Yao , Liping Zhu
{"title":"Robust positively charged polyurea nanofiltration membranes with acid resistance for efficient lithium extraction and recovery","authors":"Qin Shen ,&nbsp;Mengmeng Fang ,&nbsp;Wenshuo Cui ,&nbsp;Chuanjie Fang ,&nbsp;Zhikan Yao ,&nbsp;Liping Zhu","doi":"10.1016/j.advmem.2025.100134","DOIUrl":"10.1016/j.advmem.2025.100134","url":null,"abstract":"<div><div>Given the growing demand for lithium in energy storage and electric vehicle industries, the development of acid-resistant membranes for efficient lithium extraction from brine and recycling of spent lithium-ion batteries is crucial for advancing sustainable and scalable resource recovery technologies. Herein, a strong acid-tolerant and positively charged polyurea (PU) nanofiltration (NF) membrane was fabricated via the interfacial polymerization of toluene-2, 4-diisocyanate (TDI) monomers with poly(allylamine) (PAA) monomers with a polyethersulfone ultrafiltration membrane as the substrate. The newly-developed typical PU NF membrane performed high cation-cation separation selectivity (mixed-salt separation factor: 16.6 for Li<sup>+</sup>/Mg<sup>2+</sup>, 19.3 for Li<sup>+</sup>/Ni<sup>2+</sup>, 11.3 for Li<sup>+</sup>/Co<sup>2+</sup>, and 15.7 for Li<sup>+</sup>/Mn<sup>2+</sup>) even if exposed to 10 ​wt% H<sub>2</sub>SO<sub>4</sub> solution for 96 ​h. The high cation separation accuracy is attributed to the narrow positively-charged ion sieving channels constructed with TDI and PAA as building blocks. The urea units containing abundant bidentate hydrogen bonds and electron-rich dinitrogen atoms is responsible for the excellent acid tolerance of the PU membranes. This work has the potential to contribute to more sustainable and cost-effective lithium recovery from both brine and discarded cathode materials, making it a crucial step toward scaling up these technologies for industrial applications.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100134"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143422083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced bipolar membranes with earth-abundant water dissociation catalysts for durable ampere-level water electrolysis 先进的双极膜与地球丰富的水解离催化剂持久安培级水电解
Advanced Membranes Pub Date : 2025-01-01 DOI: 10.1016/j.advmem.2025.100152
Fanglin Duan, Xiaojiang Li, Fen Luo, Tingkun Li, Weisheng Yu, Liang Wu, Tongwen Xu
{"title":"Advanced bipolar membranes with earth-abundant water dissociation catalysts for durable ampere-level water electrolysis","authors":"Fanglin Duan,&nbsp;Xiaojiang Li,&nbsp;Fen Luo,&nbsp;Tingkun Li,&nbsp;Weisheng Yu,&nbsp;Liang Wu,&nbsp;Tongwen Xu","doi":"10.1016/j.advmem.2025.100152","DOIUrl":"10.1016/j.advmem.2025.100152","url":null,"abstract":"<div><div>Green hydrogen production via water electrolysis is a crucial pathway for sustainable energy generation. Bipolar membrane water electrolysis (BPMWE) offers several advantages, including kinetically optimal electrode reactions across pH gradients and reduced component costs. However, challenges such as high overpotential of the BPM for water dissociation (WD) and the need for long-term stability in industrial setting hinder BPMWE development. While various metal oxide catalysts have been explored to reduce WD overpotential in BPMs, the effect of different crystalline phases of interfacial catalysts on BPM performance remains poorly understood. In this study, we investigate the catalytic effects of three titanium dioxide (TiO<sub>2</sub>) phases—anatase, rutile, and amorphous—as interfacial catalysts in BPMs. The electrochemical tests reveal that rutile TiO<sub>2</sub>, with its uniform dispersion and minimal aggregation, offers excellent WD efficiency. The BPM incorporating rutile TiO<sub>2</sub> achieves current densities of 2300 ​mA ​cm<sup>−2</sup> in pure water electrolysis and 4500 ​mA ​cm<sup>−2</sup> in acid-base electrolysis at 3 ​V and 80 ​°C. Furthermore, in a flow-cell electrolyzer, it sustains stable operation for 200 ​h at 1000 ​mA ​cm<sup>−2</sup>. This work addresses critical challenges in BPM development, advancing BPMWE technology and supporting the potential for industrial-scale hydrogen production, thereby willing to contribute to the transition to sustainable energy solutions.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100152"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143942570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrospun nanofiber membrane of Piper beetle loaded PVDF/PAN for medical mask applications: psychochemical characteristics, antibacterial and air filter test 医用口罩用吹笛甲虫载PVDF/PAN静电纺纳米纤维膜:心理化学特性、抗菌和空气过滤试验
Advanced Membranes Pub Date : 2025-01-01 DOI: 10.1016/j.advmem.2025.100149
Ida Sriyanti , Muhammad Rama Almafie , Meutia Kamilatun Nuha Ap Idjan , Rahma Dani , Indah Solihah , Edi Syafri , Yulianti , Leni Marlina
{"title":"Electrospun nanofiber membrane of Piper beetle loaded PVDF/PAN for medical mask applications: psychochemical characteristics, antibacterial and air filter test","authors":"Ida Sriyanti ,&nbsp;Muhammad Rama Almafie ,&nbsp;Meutia Kamilatun Nuha Ap Idjan ,&nbsp;Rahma Dani ,&nbsp;Indah Solihah ,&nbsp;Edi Syafri ,&nbsp;Yulianti ,&nbsp;Leni Marlina","doi":"10.1016/j.advmem.2025.100149","DOIUrl":"10.1016/j.advmem.2025.100149","url":null,"abstract":"<div><div>Face masks are designed to protect the wearer from environmental hazards, such as volatile organic contaminants and suspended particulate matter (PM), which can cause asthma and anemia and affect the nervous system. This paper reports the development of a novel electrospun nanofiber membrane composite based on polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), and Piper betle extract (PLE) for potential applications in medical masks. Nanofiber membranes were fabricated via electrospinning and characterized for their physicochemical properties, antibacterial activity, and air filtration performance. SEM analysis revealed a bead-free nanofiber morphology with average diameters ranging from to 764–856 ​nm. The composite membranes exhibited high tensile strength over 34.92 ​± ​1.34 ​MPa, elongation at break of 1.24 ​% ​± ​0.031, and Young's modulus of 28.07 ​± ​1.33 ​MPa. Water contact angle measurements above 90° indicate the hydrophobic nature of the material. FTIR analysis confirmed the presence of phenolic compounds on the nanofiber surface, suggesting the incorporation of flavonoids, tannins, essential oils, alkaloids, and catechins from the PLE. The nanofiber membranes demonstrated effective antibacterial activity against <em>S. aureus</em> and <em>P. aeruginosa</em>, with inhibition zones of 19.65 ​± ​0.07 and 7.19 ​± ​0.08 ​mm, respectively, for the membrane with the highest PLE content. Air filtration tests revealed that the optimized membrane achieved a high filtration efficiency of 99.11 ​%, with a relatively low pressure drop of 80.28 ​Pa and a high-quality factor of 0.1428 ​Pa<sup>−1</sup>. The enhanced filtration properties and low filtration resistance of the PVDF/PAN/PLE electrospun membranes demonstrated their potential for the efficient removal of particulate matter and microorganisms in air filtration applications, particularly in the development of high-performance and multifunctional medical masks.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100149"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143941812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellulose-based separation membranes: A sustainable evolution or fleeting trend? 纤维素基分离膜:可持续发展还是转瞬即逝的趋势?
Advanced Membranes Pub Date : 2025-01-01 DOI: 10.1016/j.advmem.2025.100153
Fuju Qi , Benkun Qi , Zhaoliang Cui , Xiangrong Chen , Yinhua Wan , Jianquan Luo
{"title":"Cellulose-based separation membranes: A sustainable evolution or fleeting trend?","authors":"Fuju Qi ,&nbsp;Benkun Qi ,&nbsp;Zhaoliang Cui ,&nbsp;Xiangrong Chen ,&nbsp;Yinhua Wan ,&nbsp;Jianquan Luo","doi":"10.1016/j.advmem.2025.100153","DOIUrl":"10.1016/j.advmem.2025.100153","url":null,"abstract":"<div><div>Cellulose-based separation membranes are promising for sustainable membrane technology due to their renewable raw materials and biodegradability. Their excellent resistance to fouling, minimal protein adsorption, and high biocompatibility render them effective in bio-separation applications. Nevertheless, the development of truly sustainable cellulose membranes for engineering purposes remains challenging. This review begins by outlining the raw cellulosic materials employed in membrane fabrication, followed by a systematic summary of the fabrication techniques for cellulose-based membranes derived from various raw materials, alongside their progress in bio-separation. The sustainability of cellulose-based separation membranes is assessed within a life cycle framework that considers raw materials, membrane fabrication, application scenarios and end-of life, with particular emphasis on key barriers to achieving engineering sustainability. Finally, this review proposes targeted optimization strategies to tackle these limitations, offering a clear roadmap for future research aimed at transforming cellulose-based membranes from promising laboratory innovations into robust, scalable engineering solutions.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100153"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144115991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信