Ida Sriyanti , Muhammad Rama Almafie , Meutia Kamilatun Nuha Ap Idjan , Rahma Dani , Indah Solihah , Edi Syafri , Yulianti , Leni Marlina
{"title":"医用口罩用吹笛甲虫载PVDF/PAN静电纺纳米纤维膜:心理化学特性、抗菌和空气过滤试验","authors":"Ida Sriyanti , Muhammad Rama Almafie , Meutia Kamilatun Nuha Ap Idjan , Rahma Dani , Indah Solihah , Edi Syafri , Yulianti , Leni Marlina","doi":"10.1016/j.advmem.2025.100149","DOIUrl":null,"url":null,"abstract":"<div><div>Face masks are designed to protect the wearer from environmental hazards, such as volatile organic contaminants and suspended particulate matter (PM), which can cause asthma and anemia and affect the nervous system. This paper reports the development of a novel electrospun nanofiber membrane composite based on polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), and Piper betle extract (PLE) for potential applications in medical masks. Nanofiber membranes were fabricated via electrospinning and characterized for their physicochemical properties, antibacterial activity, and air filtration performance. SEM analysis revealed a bead-free nanofiber morphology with average diameters ranging from to 764–856 nm. The composite membranes exhibited high tensile strength over 34.92 ± 1.34 MPa, elongation at break of 1.24 % ± 0.031, and Young's modulus of 28.07 ± 1.33 MPa. Water contact angle measurements above 90° indicate the hydrophobic nature of the material. FTIR analysis confirmed the presence of phenolic compounds on the nanofiber surface, suggesting the incorporation of flavonoids, tannins, essential oils, alkaloids, and catechins from the PLE. The nanofiber membranes demonstrated effective antibacterial activity against <em>S. aureus</em> and <em>P. aeruginosa</em>, with inhibition zones of 19.65 ± 0.07 and 7.19 ± 0.08 mm, respectively, for the membrane with the highest PLE content. Air filtration tests revealed that the optimized membrane achieved a high filtration efficiency of 99.11 %, with a relatively low pressure drop of 80.28 Pa and a high-quality factor of 0.1428 Pa<sup>−1</sup>. The enhanced filtration properties and low filtration resistance of the PVDF/PAN/PLE electrospun membranes demonstrated their potential for the efficient removal of particulate matter and microorganisms in air filtration applications, particularly in the development of high-performance and multifunctional medical masks.</div></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"5 ","pages":"Article 100149"},"PeriodicalIF":9.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrospun nanofiber membrane of Piper beetle loaded PVDF/PAN for medical mask applications: psychochemical characteristics, antibacterial and air filter test\",\"authors\":\"Ida Sriyanti , Muhammad Rama Almafie , Meutia Kamilatun Nuha Ap Idjan , Rahma Dani , Indah Solihah , Edi Syafri , Yulianti , Leni Marlina\",\"doi\":\"10.1016/j.advmem.2025.100149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Face masks are designed to protect the wearer from environmental hazards, such as volatile organic contaminants and suspended particulate matter (PM), which can cause asthma and anemia and affect the nervous system. This paper reports the development of a novel electrospun nanofiber membrane composite based on polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), and Piper betle extract (PLE) for potential applications in medical masks. Nanofiber membranes were fabricated via electrospinning and characterized for their physicochemical properties, antibacterial activity, and air filtration performance. SEM analysis revealed a bead-free nanofiber morphology with average diameters ranging from to 764–856 nm. The composite membranes exhibited high tensile strength over 34.92 ± 1.34 MPa, elongation at break of 1.24 % ± 0.031, and Young's modulus of 28.07 ± 1.33 MPa. Water contact angle measurements above 90° indicate the hydrophobic nature of the material. FTIR analysis confirmed the presence of phenolic compounds on the nanofiber surface, suggesting the incorporation of flavonoids, tannins, essential oils, alkaloids, and catechins from the PLE. The nanofiber membranes demonstrated effective antibacterial activity against <em>S. aureus</em> and <em>P. aeruginosa</em>, with inhibition zones of 19.65 ± 0.07 and 7.19 ± 0.08 mm, respectively, for the membrane with the highest PLE content. Air filtration tests revealed that the optimized membrane achieved a high filtration efficiency of 99.11 %, with a relatively low pressure drop of 80.28 Pa and a high-quality factor of 0.1428 Pa<sup>−1</sup>. The enhanced filtration properties and low filtration resistance of the PVDF/PAN/PLE electrospun membranes demonstrated their potential for the efficient removal of particulate matter and microorganisms in air filtration applications, particularly in the development of high-performance and multifunctional medical masks.</div></div>\",\"PeriodicalId\":100033,\"journal\":{\"name\":\"Advanced Membranes\",\"volume\":\"5 \",\"pages\":\"Article 100149\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Membranes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772823425000235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823425000235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrospun nanofiber membrane of Piper beetle loaded PVDF/PAN for medical mask applications: psychochemical characteristics, antibacterial and air filter test
Face masks are designed to protect the wearer from environmental hazards, such as volatile organic contaminants and suspended particulate matter (PM), which can cause asthma and anemia and affect the nervous system. This paper reports the development of a novel electrospun nanofiber membrane composite based on polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), and Piper betle extract (PLE) for potential applications in medical masks. Nanofiber membranes were fabricated via electrospinning and characterized for their physicochemical properties, antibacterial activity, and air filtration performance. SEM analysis revealed a bead-free nanofiber morphology with average diameters ranging from to 764–856 nm. The composite membranes exhibited high tensile strength over 34.92 ± 1.34 MPa, elongation at break of 1.24 % ± 0.031, and Young's modulus of 28.07 ± 1.33 MPa. Water contact angle measurements above 90° indicate the hydrophobic nature of the material. FTIR analysis confirmed the presence of phenolic compounds on the nanofiber surface, suggesting the incorporation of flavonoids, tannins, essential oils, alkaloids, and catechins from the PLE. The nanofiber membranes demonstrated effective antibacterial activity against S. aureus and P. aeruginosa, with inhibition zones of 19.65 ± 0.07 and 7.19 ± 0.08 mm, respectively, for the membrane with the highest PLE content. Air filtration tests revealed that the optimized membrane achieved a high filtration efficiency of 99.11 %, with a relatively low pressure drop of 80.28 Pa and a high-quality factor of 0.1428 Pa−1. The enhanced filtration properties and low filtration resistance of the PVDF/PAN/PLE electrospun membranes demonstrated their potential for the efficient removal of particulate matter and microorganisms in air filtration applications, particularly in the development of high-performance and multifunctional medical masks.