Jitender Singh, Krishan Lal Khanduja, Divya Dahiya, Pramod K Avti
{"title":"Mechanistic Regulation of Epidermal Growth Factor and Hormonal Receptors by Kinase Inhibitors and Organofluorines in Breast Cancer Therapy.","authors":"Jitender Singh, Krishan Lal Khanduja, Divya Dahiya, Pramod K Avti","doi":"10.1007/s12013-024-01546-9","DOIUrl":"10.1007/s12013-024-01546-9","url":null,"abstract":"<p><p>Differential expression patterns of growth factor (EGFR, HER-2) and hormonal (ER, PR) receptors in breast cancer (BC) remain crucial for evaluating and tailoring therapeutic interventions. This study investigates differential expression profiles of hormonal and growth factor receptors in BC patients and across age groups, major subclasses, disease stages and tumor histology and survival rates, the efficacy of emerging clinical trial drugs (Dabrafenib and Palbociclib) and elucidating their molecular interaction mechanisms for efficient therapeutic strategies. Gene and protein expression analysis in the normal vs BC and across age groups and major subclasses reveals divergent patterns as EGFR and HER-2 levels are reduced in tumors versus normal tissue, while ER and PR levels are higher, particularly in luminal subtypes. However, there was no significant difference in survival rates among high and low/medium expression levels of EGFR and PR receptors. Conversely, patients with high HER-2 and ER expression exhibited poorer survival rates compared to low or medium expression levels. The in vitro findings indicate that Dabrafenib exhibits greater effectiveness than Palbociclib in suppressing various BC cells such as MCF-7 (Luminal), MDA-MB-231 (Triple-Negative), SKBR-3 (HER-2 + ) proliferation, promoting cell death, (IC<sub>50</sub> of Dab < Pal) at 24 and 48 h, ROS production, and reduced ER and PR, elevated HER-2 with no change in EGFR expression. Molecular simulation studies revealed Dabrafenib's thermodynamically stable interactions (ΔG), tighter binding, and less structural deviation in the order EGFR > HER-2 > ER > PR as compared to Palbociclib (HER-2 > ER > PR = EGFR). These results indicate that Dabrafenib, compared to Palbociclib, more effectively regulates breast cancer cell proliferation through specific interactions with hormonal and growth factor receptors towards a repurposing approach.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1113-1137"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142306880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fariya Khan, Altaf Ahmad Shah, Ajay Kumar, Salman Akhtar
{"title":"Correction: In Silico Investigation against Inhibitors of Alpha-Amylase Using Structure-based Screening, Molecular Docking, and Molecular Simulations Studies.","authors":"Fariya Khan, Altaf Ahmad Shah, Ajay Kumar, Salman Akhtar","doi":"10.1007/s12013-024-01490-8","DOIUrl":"10.1007/s12013-024-01490-8","url":null,"abstract":"","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1323"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chondrocyte Ferritinophagy as a Molecular Mechanism of Arthritis-A Narrative Review.","authors":"Yong Liu, Chao Song, Silong Gao, Daqian Zhou, Jiale Lv, Yang Zhou, Liquan Wang, Houyin Shi, Fei Liu, Zhongwei Xiong, Yunqing Hou, Zongchao Liu","doi":"10.1007/s12013-024-01534-z","DOIUrl":"10.1007/s12013-024-01534-z","url":null,"abstract":"<p><p>Osteoarthritis (OA) is a prevalent joint disease affecting orthopedic patients. Its incidence is steadily increasing, causing great economic hardship for individuals and society as a whole. OA is connected with risk factors such as genetics, obesity, and joint diseases; yet, its pathophysiology is still largely understood. At present, several cell death pathways govern the initiation and advancement of OA. It has been discovered that the onset and progression of OA are strongly associated with pyroptosis, senescence, apoptosis, ferroptosis, and autophagy. Ferroptosis and autophagy have not been well studied in OA, and elucidating their molecular mechanisms in chondrocytes is important for the diagnosis of OA. For this reason, we aim was reviewed recent national and international developments and provided an initial understanding of the molecular pathways underlying autophagy and ferroptosis in OA. We determined the reference period to be the last five years by searching for the keywords \"osteoarthritis, mechanical stress, Pizeo1, ferroptosis, autophagy, ferritin autophagy\" in the three databases of PUBMED, Web of Science, Google Scholar. We then screened irrelevant literature by reading the abstracts. Ferroptosis is a type of programmed cell death that is dependent on reactive oxygen species and Fe<sup>2+</sup>. It is primarily caused by processes linked to amino acid metabolism, lipid peroxidation, and iron metabolism. Furthermore, Piezoelectric mechanically sensitive ion channel assembly 1 (PIEZO1), which is triggered by mechanical stress, has been revealed to be intimately associated with ferroptosis events. It was found that mechanical injury triggers changes in the intracellular environment of articular chondrocytes (e.g., elevated levels of oxidative stress and increased inflammation) through PIEZO1, ultimately leading to iron death in chondrocytes. Therefore, we believe that PIEZO1 is a key initiator protein of iron death in chondrocytes. Widely present in eukaryotic cells, autophagy is a lysosome-dependent, evolutionarily conserved catabolic process that carries misfolded proteins, damaged organelles, and other macromolecules to lysosomes for breakdown and recycling. Throughout OA, autophagy is activated to differing degrees, indicating that autophagy may play a role in the development of OA. According to recent research, autophagy is a major factor in the process that leads cells to ferroptosis. Despite the notion of ferritinophagy being put forth, not much research has been done to clarify the connection between ferroptosis and autophagy in OA.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1021-1033"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SUV39H1 Regulates Gastric Cancer Progression via the H3K9me3/ALDOB Axis.","authors":"Xueyong Li, Cuixia Liu, Yi Gao","doi":"10.1007/s12013-024-01524-1","DOIUrl":"10.1007/s12013-024-01524-1","url":null,"abstract":"<p><p>Gastric cancer (GC) is a malignant tumor with high incidence rate. H3K9me3 is related to transcriptional suppression and modulated by histone methyltransferase suppressor of variegation 3-9 homolog 1 (SUV39H1). SUV39H1 is dysregulated in assorted cancers and exerts the regulatory function. Nevertheless, the specific biofunction of SUV39H1 in GC needs further confirmation. SUV39H1 and H3K9me3 expressions were tested through RT-qPCR and western blot. Colony formation, wound healing, and transwell assays were employed for testing cell behaviors. ChIP assay was utilized for assessing the interaction between H3K9me3 and aldolase B (ALDOB). Xenograft experiment was employed for measuring tumor growth. We found that SUV39H1 and H3K9me3 were overexpressed in GC tissues and cells. SUV39H1 knockdown notably suppressed GC cell proliferative, migratory, and invasive capabilities. The treatment of chaetocin or F5446 (inhibitors of SUV39H1 enzymatic activity) also restrained GC cell behaviors. In addition, we discovered that SUV39H1 could negatively regulate ALDOB expression. SUV39H1 depletion reduced H3K9me3 modification to ALDOB promoter region. In rescue assays, we proved that ALDOB reduction reversed the inhibitory functions of SUV39H1 silencing on GC progression. Furthermore, tumor growth of mice was suppressed by sh-SUV39H1 transfection, chaetocin treatment, or F5446 treatment. In conclusion, SUV39H1 promoted GC progression by modulating the H3K9me3/ALDOB axis.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"919-928"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lei Liu, Hao Zhang, Siming Chen, Wankang Dian, Zhou Zheng
{"title":"Cinnamaldehyde Alleviates Alveolar Epithelial Cell Injury in ALI by Inhibiting the CaMKII Pathway.","authors":"Lei Liu, Hao Zhang, Siming Chen, Wankang Dian, Zhou Zheng","doi":"10.1007/s12013-024-01544-x","DOIUrl":"10.1007/s12013-024-01544-x","url":null,"abstract":"<p><p>Alveolar epithelial cell injury plays a key role in acute lung injury (ALI) and is a vital determinant of its severity. Here, we aimed to assess the protective effects of cinnamaldehyde (CA) on lipopolysaccharide (LPS)-induced A549 cells and elucidate the underlying mechanisms. A549 cells were stimulated with 1 μg/mL LPS for 24 h to establish an alveolar epithelial cell injury model and subsequently treated with CA or Ca<sup>2+</sup>/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93. Flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and lactate dehydrogenase release assays were used to evaluate apoptosis, cell viability, and lactate dehydrogenase activity, respectively. Levels of inflammatory cytokines (interleukin-6, interleukin-1β, tumor necrosis tactor-α, and interferon-γ) and oxidative stress markers (reactive oxygen species, superoxide dismutase, catalase, and malondialdehyde) were determined using enzyme-linked immunosorbent assay and specific assay kits, respectively. Furthermore, levels of apoptosis-related proteins (cleaved caspase-3, Bcl-2-associated X, and Bcl-2) and CaMKII were assessed via western blotting. CA did not exhibit significant cytotoxicity in A549 cells. It dose-dependently improved the cell viability, suppressed apoptosis, decreased cleaved caspase-3 and Bcl-2-associated X levels, and increased Bcl-2 levels in LPS-treated A549 cells. It also inhibited inflammatory factor release and oxidative stress in LPS-induced A549 cells. Similar results were observed in the KN93- and CA-treated groups. Western blotting assay revealed that CA and KN93 inhibited CaMKII pathway activation, as indicated by the reduced p-CaMKII and p-phospholamban (PLN) levels and p-CaMKII/CaMKII and p-PLN/PLN ratios. Overall, CA alleviated alveolar epithelial cell injury by inhibiting the inflammatory response and oxidative stress and inducing cell apoptosis in LPS-induced A549 cells by regulating the CaMKII pathway, serving as a potential candidate for ALI prevention and treatment.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1097-1104"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142306878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sharika Noshin, Rahul Dev Bairagi, Sadia Airin, Dipa Debnath, Md Sohanur Rahaman, Amit Kumar Acharzo, Most Nazmin Aktar, Mohammed Bourhia, Ahmad Mohammad Salamatullah, Md Amirul Islam
{"title":"Synergistic Bioactivity of Aegiceras corniculatum (L.) Blanco and Its Endophytic Fungus Aspergillus: Antioxidant, Antimicrobial, and Cytotoxic Effects.","authors":"Sharika Noshin, Rahul Dev Bairagi, Sadia Airin, Dipa Debnath, Md Sohanur Rahaman, Amit Kumar Acharzo, Most Nazmin Aktar, Mohammed Bourhia, Ahmad Mohammad Salamatullah, Md Amirul Islam","doi":"10.1007/s12013-024-01553-w","DOIUrl":"10.1007/s12013-024-01553-w","url":null,"abstract":"<p><p>The mangrove fungi provide a vast and unexplored source of diverse and unique chemicals and biological properties. The plant Aegiceras corniculatum (L.) Blanco and its endophytic fungus aspergillus species were collected from different sites of the Baleswar river region in Sundarban. Hence, we compared the antioxidant properties of the associated fungus ACSF-1 and the methanolic bark extract of Aegiceras corniculatum (MBAC) by measuring the total phenolic content (TPC), total flavonoid content (TFC), and DPPH free radical assay. Subsequently, antimicrobial activity was measured using the disc diffusion method, and cytotoxic activity was measured using the brine shrimp lethality bioassay. The results showed that MBAC has even more DPPH scavenging activity (IC<sub>50</sub> = 44.036 μg/mL), TPC (310.275 mg GAE/g), and TFC (66.275 mg QE/g) in comparison with DPPH scavenging activity (IC<sub>50</sub> = 92.542 μg/mL), TPC (234.832 mg GAE/g), and TFC (134.887 mg QE/g) in ACSF-1. The median lethal concentration value (LC<sub>50</sub>) of MBAC and ACSF-1 was found to be 43.93 μg/mL and 336.84 μg/mL, respectively. Moreover, MBAC showed a dose-dependent antimicrobial response to Escherichia coli and Staphylococcus aureus, whereas ACSF-1 was found to have activity against Bacillus subtilis and S. aureus. These results emphasize the unique pharmacological characteristics of both the plant and fungus, indicating their potential usefulness in various therapeutic fields.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"1197-1206"},"PeriodicalIF":1.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alaa E Hassanien, Ghada Elsherbiny, Gamal M Abdelfattah, Marwa M Abdel-Aziz, Eman A El-Hagrassey
{"title":"Synthesis, DFT study, in silico ADMET evaluation, molecular docking, and QSAR analysis of new anti-tuberculosis drugs derived from 2-hydroxybenzohydrazide derivatives.","authors":"Alaa E Hassanien, Ghada Elsherbiny, Gamal M Abdelfattah, Marwa M Abdel-Aziz, Eman A El-Hagrassey","doi":"10.1007/s11030-025-11130-9","DOIUrl":"https://doi.org/10.1007/s11030-025-11130-9","url":null,"abstract":"<p><p>This study investigates the potential of novel thiazole and hydroxybenzohydrazide derivatives as antitubercular agents. Using molecular docking and density functional theory (DFT) calculations, the binding affinities of these derivatives to the enoyl-acyl carrier protein reductase (InhA) enzyme of M. tb were assessed. InhA is crucial for the mycobacterial fatty acid synthase II (FAS-II) pathway, making it a prime target for drug development. QSAR analysis was employed to relate molecular descriptors to biological activity, and ADMET descriptors evaluated the pharmacokinetics and toxicity of the compounds. Experimental synthesis of the compounds and their characterization via IR and NMR spectroscopy confirmed their structures. DFT calculations revealed multiple conformers for each compound, with specific isomers showing enhanced stability and favorable binding interactions with InhA. These findings suggest that the synthesized derivatives have potential as new antitubercular agents, offering a basis for future drug development strategies against multidrug-resistant TB.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143530855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Waqas, Muhammad Ajaz, Jihane Ben Slimane, Murad Badshah, Haifa I. Alrebdi, Abd Al Karim Haj Ismail
{"title":"Evaluation of kinetic freeze-out properties in different relativistic heavy-ion collision systems at (sqrt{s_{NN}}=200) GeV","authors":"Muhammad Waqas, Muhammad Ajaz, Jihane Ben Slimane, Murad Badshah, Haifa I. Alrebdi, Abd Al Karim Haj Ismail","doi":"10.1140/epjp/s13360-025-06119-0","DOIUrl":"10.1140/epjp/s13360-025-06119-0","url":null,"abstract":"<div><p>We present our analysis of the identified hadrons (<span>(pi ^+)</span>, <span>(K^+)</span>, and <i>p</i>) kinetic freeze-out properties in relativistic collisions at <span>(sqrt{s_{NN}} = 200)</span> GeV. We analyze the transverse momentum spectra of these hadrons across various collision systems, such as copper–copper (<span>(Cu-Cu)</span>), zirconium–zirconium (<span>(Zr-Zr)</span>), ruthenium–ruthenium (<span>(Ru-Ru)</span>), uranium–uranium (<span>(U-U)</span>), and gold–gold (<span>(Au-Au)</span>) collisions, in distinct centrality intervals at the same center-of-mass energy using the modified Hagedorn model with embedded flow. The freeze-out parameters, namely the kinetic freeze-out temperature (<span>(T_0)</span>), transverse flow velocity (<span>(beta _T)</span>), and the entropy-related parameter (<i>n</i>), are extracted. Taking <span>(T_0)</span> and <span>(beta _T)</span> as common, it is observed that in all the above collisions, <span>(T_0)</span>, <span>(beta _T)</span>, and the parameter <i>n</i> diminish toward the periphery and are greater in central collisions. However, <span>(T_0)</span> in central collisions across all the systems remains unchanged, indicating a phase transition from hadronic matter to quark–gluon plasma. Furthermore, the temperature required for the phase transition across various systems is different. Large systems exhibit a shift in the potential start of the phase transition in peripheral collisions, which is intriguing. We also observe a direct relation between the extracted parameters and the system’s size.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"140 2","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143527629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. G. Korzhova, A. A. Bryuzgina, U. V. Khomutova, O. A. Laput, I. V. Vasenina, D. A. Zuza, S. G. Tuyakova, I. A. Kurzina
{"title":"Activation of Polylactic Acid Surface by Glow Discharge Low-Temperature Plasma in Ar/Air Gas Mixture Flows with the Addition of Diethylamine Vapor","authors":"A. G. Korzhova, A. A. Bryuzgina, U. V. Khomutova, O. A. Laput, I. V. Vasenina, D. A. Zuza, S. G. Tuyakova, I. A. Kurzina","doi":"10.1134/S1027451024701532","DOIUrl":"10.1134/S1027451024701532","url":null,"abstract":"<p>The surface physicochemical properties of materials-based on polylactic acid modified by flows of low-temperature glow discharge plasma were studied. A mixture of argon and air acted as a plasma-forming gas, and diethylamine vapor was injected into the plasma as a precursor of amino groups. The elemental composition and chemical state of the surface were studied using X-ray photoelectron spectroscopy. The attachment of nitrogen atoms to the polylactic acid surface and the formation of a bond between the surface carbon and the penetrated nitrogen have been established. It was shown that the hydrophilicity of the plasma modified polylactic acid surface was significantly increased. The obtained polylactic acid-based materials with the argon/air/diethylamine plasma modified surface may have prospects for use in biomedicine due to improved hydrophilicity and the presence of reactive oxygen- and nitrogen-containing functional groups on the surface.</p>","PeriodicalId":671,"journal":{"name":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","volume":"18 6","pages":"1551 - 1559"},"PeriodicalIF":0.5,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143527639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization and in vitro cellular activity assessment of photodynamic composite nanocarriers for gliomas treatment","authors":"Yongxu Yang, Wenxiu Li, Junhong Zhou, Yang Yu, Shujie Liu, Qing Xu","doi":"10.1007/s11051-025-06268-4","DOIUrl":"10.1007/s11051-025-06268-4","url":null,"abstract":"<div><p>Glioblastoma (GBM) originates from cancerous cells of the central nervous system (CNS) in the brain and spinal cord, and is the most common malignant primary tumor in brain tumors, with a high degree of aggressiveness and resistance to treatment, accounting for 48.6% of CNS malignant tumors. Although metal–organic frameworks (MOFs) have been widely used in drug delivery, developing nanocarriers with both high stability and biocompatibility remains a significant challenge. This study developed a novel composite nano drug delivery system, PLGA-PDI@CP1@1, which combines poly(lactic-co-glycolic acid) (PLGA) and perylene diimide (PDI) with excellent fluorescence properties to effectively encapsulate MOF-based CP1. The system was further loaded with an active compound extracted from ginseng (compound 1) for the treatment of gliomas. Through in vitro cellular experiments, we found that PLGA-PDI@CP1@1 was able to inhibit the proliferation of cancer cells by suppressing the expression of the glioma proliferation-associated gene MAGED4.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143527645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}