Alexandra Polyzou, Alexandros K Tsiouris, Charalampos Labrakakis, Britta J Eickholt, George Leondaritis
{"title":"Lysophosphatidic acid signaling: Transmembrane modulators in the central nervous system.","authors":"Alexandra Polyzou, Alexandros K Tsiouris, Charalampos Labrakakis, Britta J Eickholt, George Leondaritis","doi":"10.4103/NRR.NRR-D-24-01465","DOIUrl":"10.4103/NRR.NRR-D-24-01465","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"1104-1105"},"PeriodicalIF":6.7,"publicationDate":"2026-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296401/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143720911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raquel Coronel, Rosa González-Sastre, Patricia Mateos-Martínez, Laura Maeso, Elena Llorente-Beneyto, Sabela Martín-Benito, Viviana S Costa Gagosian, Leonardo Foti, Ma Carmen González-Caballero, Victoria López-Alonso, Isabel Liste
{"title":"Human cerebral organoids: Complex, versatile, and human-relevant models of neural development and brain diseases.","authors":"Raquel Coronel, Rosa González-Sastre, Patricia Mateos-Martínez, Laura Maeso, Elena Llorente-Beneyto, Sabela Martín-Benito, Viviana S Costa Gagosian, Leonardo Foti, Ma Carmen González-Caballero, Victoria López-Alonso, Isabel Liste","doi":"10.4103/NRR.NRR-D-24-01639","DOIUrl":"10.4103/NRR.NRR-D-24-01639","url":null,"abstract":"<p><p>The brain is the most complex human organ, and commonly used models, such as two-dimensional-cell cultures and animal brains, often lack the sophistication needed to accurately use in research. In this context, human cerebral organoids have emerged as valuable tools offering a more complex, versatile, and human-relevant system than traditional animal models, which are often unable to replicate the intricate architecture and functionality of the human brain. Since human cerebral organoids are a state-of-the-art model for the study of neurodevelopment and different pathologies affecting the brain, this field is currently under constant development, and work in this area is abundant. In this review, we give a complete overview of human cerebral organoids technology, starting from the different types of protocols that exist to generate different human cerebral organoids. We continue with the use of brain organoids for the study of brain pathologies, highlighting neurodevelopmental, psychiatric, neurodegenerative, brain tumor, and infectious diseases. Because of the potential value of human cerebral organoids, we describe their use in transplantation, drug screening, and toxicology assays. We also discuss the technologies available to study cell diversity and physiological characteristics of organoids. Finally, we summarize the limitations that currently exist in the field, such as the development of vasculature and microglia, and highlight some of the novel approaches being pursued through bioengineering.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"837-854"},"PeriodicalIF":6.7,"publicationDate":"2026-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296421/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144020784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regulation of dendrite and axon growth and arborization by CD40L-reverse signaling: Interrelationships among JNK, PKC, and ERK1/2 signaling pathways.","authors":"Paulina Carriba","doi":"10.4103/NRR.NRR-D-24-01171","DOIUrl":"10.4103/NRR.NRR-D-24-01171","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":"21 3","pages":"1116-1117"},"PeriodicalIF":6.7,"publicationDate":"2026-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296438/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144310177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Medical Gas ResearchPub Date : 2026-03-01Epub Date: 2025-06-28DOI: 10.4103/mgr.MEDGASRES-D-25-00036
Maher Monir Akl, Maya M El-Samnody, Amr Ahmed
{"title":"Integrating carboxytherapy and hypochlorous acid: a novel molecular approach harnessing the Bohr effect for diabetic foot ulcer treatment.","authors":"Maher Monir Akl, Maya M El-Samnody, Amr Ahmed","doi":"10.4103/mgr.MEDGASRES-D-25-00036","DOIUrl":"10.4103/mgr.MEDGASRES-D-25-00036","url":null,"abstract":"","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"16 1","pages":"82-83"},"PeriodicalIF":2.9,"publicationDate":"2026-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12318568/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144528824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Medical Gas ResearchPub Date : 2026-03-01Epub Date: 2025-06-28DOI: 10.4103/mgr.MEDGASRES-D-24-00149
Yih-Kuen Jan, W Catherine Cheung
{"title":"Muscle oxygenation regulation in physical therapy and rehabilitation.","authors":"Yih-Kuen Jan, W Catherine Cheung","doi":"10.4103/mgr.MEDGASRES-D-24-00149","DOIUrl":"10.4103/mgr.MEDGASRES-D-24-00149","url":null,"abstract":"<p><p>Skeletal muscle oxygenation reflects the balance between oxygen delivery from the microcirculation and oxygen consumption of the muscle cells. Oxygenation in the muscle tissue is an essential factor in muscle contractions for performing activities of daily living and exercise as well as muscle tissue viability. It is until the development of near-infrared spectroscopy for providing a noninvasive, continuous monitoring of muscle oxygenation. The principle of near-infrared spectroscopy is to use light property to assess oxygenation based on the appearance of oxygenated blood in red and deoxygenated blood in darker red to black. To date, there is no comprehensive review focusing on muscle oxygenation regulation and its applications in physical therapy and rehabilitation. The objectives of this comprehensive review are to: 1) highlight the recent technical advances in near-infrared spectroscopytechnology for rehabilitation researchers, 2) present the advances in pathophysiological research in muscle oxygenation, and 3) evaluate findings and evidence of recent physical therapy and rehabilitation studies on improving muscle oxygenation. The review also evaluates findings and evidence of aerobic exercise, resistance exercise, contrast bath therapy, wound healing, cupping therapy, stretching, and electrical stimulation on muscle oxygen in healthy adults and patients with cardiovascular diseases. The use of near-infrared spectroscopy allows the assessment of muscle oxidative metabolism for personalized rehabilitation and exercise training.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"16 1","pages":"66-75"},"PeriodicalIF":2.9,"publicationDate":"2026-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12318581/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144528827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guohui Yang, Chong Guan, Meixi Liu, Yi Lin, Ying Xing, Yashuo Feng, Haozheng Li, Yi Wu, Nianhong Wang, Lu Luo
{"title":"Electroacupuncture for the treatment of ischemic stroke: A preclinical meta-analysis and systematic review.","authors":"Guohui Yang, Chong Guan, Meixi Liu, Yi Lin, Ying Xing, Yashuo Feng, Haozheng Li, Yi Wu, Nianhong Wang, Lu Luo","doi":"10.4103/NRR.NRR-D-24-01030","DOIUrl":"10.4103/NRR.NRR-D-24-01030","url":null,"abstract":"<p><p>Stroke remains a leading cause of death and disability worldwide, and electroacupuncture has a long history of use in stroke treatment. This meta-analysis and systematic review aimed to evaluate the efficacy of electroacupuncture and explore its potential mechanisms in animal models of ischemic stroke. The PubMed, EMBASE, Web of Science, CENTRAL, and CINAHL databases were comprehensively searched up to May 1, 2024. This review included articles on preclinical investigations of the efficacy and mechanisms of electroacupuncture in treating ischemic stroke. Data from 70 eligible studies were analyzed in Stata 18.0, using a random-effects model to calculate the standardized mean difference (Hedge's g). The risk of bias was assessed using RevMan 5.4 software, and the quality of evidence was rated according to the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system. Subgroup analyses were conducted to test the consistency of the results and sensitivity analyses were used to assess their robustness. The quality assessment revealed that most studies adequately handled incomplete data and selective reporting. However, several methodological limitations were identified: only 4 studies demonstrated a low risk of allocation concealment, 26 achieved a low risk of outcome assessment bias, and 9 had a high risk of randomization bias. Additionally, there was an unclear risk regarding participant blinding and other methodological aspects. The GRADE assessment rated 12 outcomes as moderate quality and 6 as low quality. The mechanisms of electroacupuncture treatment for ischemic stroke can be categorized as five primary pathways: (1) Electroacupuncture significantly reduced infarct volume and apoptotic cell death ( P < 0.01) in ischemic stroke models; (2) electroacupuncture significantly decreased the levels of pro-inflammatory factors ( P < 0.01) while increasing the levels of anti-inflammatory factors ( P = 0.02); (3) electroacupuncture reduced the levels of oxidative stress indicators ( P < 0.01) and enhanced the expression of antioxidant enzymes ( P < 0.01); (4) electroacupuncture significantly promoted nerve regeneration ( P < 0.01); and (5) electroacupuncture influenced blood flow remodeling ( P < 0.01) and angiogenesis ( P < 0.01). Subgroup analyses indicated that electroacupuncture was most effective in the transient middle cerebral artery occlusion model ( P < 0.01) and in post-middle cerebral artery occlusion intervention ( P < 0.01). Dispersive waves were found to outperform continuous waves with respect to neuroprotection and anti-inflammatory effects ( P < 0.01), while scalp acupoints demonstrated greater efficacy than body acupoints ( P < 0.01). The heterogeneity among the included studies was minimal, and sensitivity analyses indicated stable results. Their methodological quality was generally satisfactory. In conclusion, electroacupuncture is effective in treating cerebral ischemia by modulating cell apoptosis, o","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"1191-1210"},"PeriodicalIF":6.7,"publicationDate":"2026-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296412/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143066865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Debbie Xiu En Lim, Shi Yun Yeo, Zhen You Ashley Chia, Aaron Zefrin Fernandis, Jimmy Lee, John Jia En Chua
{"title":"Schizophrenia: Genetics, neurological mechanisms, and therapeutic approaches.","authors":"Debbie Xiu En Lim, Shi Yun Yeo, Zhen You Ashley Chia, Aaron Zefrin Fernandis, Jimmy Lee, John Jia En Chua","doi":"10.4103/NRR.NRR-D-24-01375","DOIUrl":"10.4103/NRR.NRR-D-24-01375","url":null,"abstract":"<p><p>Schizophrenia is a complex psychiatric disorder marked by positive and negative symptoms, leading to mood disturbances, cognitive impairments, and social withdrawal. While anti-psychotic medications remain the cornerstone of treatment, they often fail to fully address certain symptoms. Additionally, treatment-resistant schizophrenia, affecting 30%-40% of patients, remains a substantial clinical challenge. Positive, negative symptoms and cognitive impairments have been linked to disruptions in the glutamatergic, serotonin, GABAergic, and muscarinic pathways in the brain. Recent advances using genome-wide association study and other approaches have uncovered a significant number of new schizophrenia risk genes that uncovered new, and reinforced prior, concepts on the genetic and neurological underpinnings of schizophrenia, including abnormalities in synaptic function, immune processes, and lipid metabolism. Concurrently, new therapeutics targeting different modalities, which are expected to address some of the limitations of anti-psychotic drugs currently being offered to patients, are currently being evaluated. Collectively, these efforts provide new momentum for the next phase of schizophrenia research and treatment.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"1089-1103"},"PeriodicalIF":6.7,"publicationDate":"2026-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144036518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular mechanisms after optic nerve injury: Neurorepair strategies from a transcriptomic perspective.","authors":"Xiaxue Chen, Muyang Wei, Guangyu Li","doi":"10.4103/NRR.NRR-D-24-00794","DOIUrl":"10.4103/NRR.NRR-D-24-00794","url":null,"abstract":"<p><p>Retinal ganglion cells, a crucial component of the central nervous system, are often affected by irreversible visual impairment due to various conditions, including trauma, tumors, ischemia, and glaucoma. Studies have shown that the optic nerve crush model and glaucoma model are commonly used to study retinal ganglion cell injury. While these models differ in their mechanisms, both ultimately result in retinal ganglion cell injury. With advancements in high-throughput technologies, techniques such as microarray analysis, RNA sequencing, and single-cell RNA sequencing have been widely applied to characterize the transcriptomic profiles of retinal ganglion cell injury, revealing underlying molecular mechanisms. This review focuses on optic nerve crush and glaucoma models, elucidating the mechanisms of optic nerve injury and neuron degeneration induced by glaucoma through single-cell transcriptomics, transcriptome analysis, and chip analysis. Research using the optic nerve crush model has shown that different retinal ganglion cell subtypes exhibit varying survival and regenerative capacities following injury. Single-cell RNA sequencing has identified multiple genes associated with retinal ganglion cell protection and regeneration, such as Gal , Ucn , and Anxa2 . In glaucoma models, high-throughput sequencing has revealed transcriptomic changes in retinal ganglion cells under elevated intraocular pressure, identifying genes related to immune response, oxidative stress, and apoptosis. These genes are significantly upregulated early after optic nerve injury and may play key roles in neuroprotection and axon regeneration. Additionally, CRISPR-Cas9 screening and ATAC-seq analysis have identified key transcription factors that regulate retinal ganglion cell survival and axon regeneration, offering new potential targets for neurorepair strategies in glaucoma. In summary, single-cell transcriptomic technologies provide unprecedented insights into the molecular mechanisms underlying optic nerve injury, aiding in the identification of novel therapeutic targets. Future researchers should integrate advanced single-cell sequencing with multi-omics approaches to investigate cell-specific responses in retinal ganglion cell injury and regeneration. Furthermore, computational models and systems biology methods could help predict molecular pathways interactions, providing valuable guidance for clinical research on optic nerve regeneration and repair.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"989-999"},"PeriodicalIF":6.7,"publicationDate":"2026-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296432/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144002704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marcus Elo Rytter, Cecilie Amalie Brøgger Svane, Joachim Størling, Wenqiang Chen
{"title":"Dysregulated insulin signaling and inflammation contribute to the pathogenesis of Alzheimer's disease: From animal models to human cells.","authors":"Marcus Elo Rytter, Cecilie Amalie Brøgger Svane, Joachim Størling, Wenqiang Chen","doi":"10.4103/NRR.NRR-D-24-01591","DOIUrl":"10.4103/NRR.NRR-D-24-01591","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"1126-1127"},"PeriodicalIF":6.7,"publicationDate":"2026-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296470/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143493005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}