全部最新文献

筛选
英文 中文
Decoding molecular mechanisms: brain aging and Alzheimer's disease. 解码分子机制:大脑衰老与阿尔茨海默病。
IF 5.9 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2025-08-01 Epub Date: 2024-07-29 DOI: 10.4103/NRR.NRR-D-23-01403
Mahnoor Hayat, Rafay Ali Syed, Hammad Qaiser, Mohammad Uzair, Khalid Al-Regaiey, Roaa Khallaf, Lubna Abdullah Mohammed Albassam, Imdad Kaleem, Xueyi Wang, Ran Wang, Mehwish S Bhatti, Shahid Bashir
{"title":"Decoding molecular mechanisms: brain aging and Alzheimer's disease.","authors":"Mahnoor Hayat, Rafay Ali Syed, Hammad Qaiser, Mohammad Uzair, Khalid Al-Regaiey, Roaa Khallaf, Lubna Abdullah Mohammed Albassam, Imdad Kaleem, Xueyi Wang, Ran Wang, Mehwish S Bhatti, Shahid Bashir","doi":"10.4103/NRR.NRR-D-23-01403","DOIUrl":"10.4103/NRR.NRR-D-23-01403","url":null,"abstract":"<p><p>The complex morphological, anatomical, physiological, and chemical mechanisms within the aging brain have been the hot topic of research for centuries. The aging process alters the brain structure that affects functions and cognitions, but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease. Beyond these observable, mild morphological shifts, significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain. Understanding these changes is important for maintaining cognitive health, especially given the increasing prevalence of age-related conditions that affect cognition. This review aims to explore the age-induced changes in brain plasticity and molecular processes, differentiating normal aging from the pathogenesis of Alzheimer's disease, thereby providing insights into predicting the risk of dementia, particularly Alzheimer's disease.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"2279-2299"},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo direct neuronal conversion as a therapeutic strategy for ischemic stroke. 将体内直接神经元转换作为缺血性中风的治疗策略。
IF 5.9 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2025-08-01 Epub Date: 2024-07-29 DOI: 10.4103/NRR.NRR-D-24-00545
Takashi Irie, Taito Matsuda
{"title":"In vivo direct neuronal conversion as a therapeutic strategy for ischemic stroke.","authors":"Takashi Irie, Taito Matsuda","doi":"10.4103/NRR.NRR-D-24-00545","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-24-00545","url":null,"abstract":"","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"20 8","pages":"2309-2310"},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Making bridges between preclinical and clinical insights into age-related cognitive decline. 在临床前研究和临床研究之间架起桥梁,深入了解与年龄有关的认知能力衰退。
IF 5.9 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2025-08-01 Epub Date: 2024-09-06 DOI: 10.4103/NRR.NRR-D-24-00200
David Vc Brito, Clévio Nóbrega
{"title":"Making bridges between preclinical and clinical insights into age-related cognitive decline.","authors":"David Vc Brito, Clévio Nóbrega","doi":"10.4103/NRR.NRR-D-24-00200","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-24-00200","url":null,"abstract":"","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"20 8","pages":"2321-2322"},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding activity of butyrate at a cellular level. 从细胞层面了解丁酸盐的活性。
IF 5.9 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2025-08-01 Epub Date: 2024-09-06 DOI: 10.4103/NRR.NRR-D-24-00468
Prapti Chakraborty, Angela S Laird
{"title":"Understanding activity of butyrate at a cellular level.","authors":"Prapti Chakraborty, Angela S Laird","doi":"10.4103/NRR.NRR-D-24-00468","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-24-00468","url":null,"abstract":"","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"20 8","pages":"2323-2324"},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bidirectional regulation of the brain-gut-microbiota axis following traumatic brain injury. 脑外伤后大脑-肠道-微生物群轴的双向调节。
IF 5.9 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2025-08-01 Epub Date: 2024-07-10 DOI: 10.4103/NRR.NRR-D-24-00088
Xinyu You, Lin Niu, Jiafeng Fu, Shining Ge, Jiangwei Shi, Yanjun Zhang, Pengwei Zhuang
{"title":"Bidirectional regulation of the brain-gut-microbiota axis following traumatic brain injury.","authors":"Xinyu You, Lin Niu, Jiafeng Fu, Shining Ge, Jiangwei Shi, Yanjun Zhang, Pengwei Zhuang","doi":"10.4103/NRR.NRR-D-24-00088","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-24-00088","url":null,"abstract":"<p><p>JOURNAL/nrgr/04.03/01300535-202508000-00002/figure1/v/2024-09-30T120553Z/r/image-tiff Traumatic brain injury is a prevalent disorder of the central nervous system. In addition to primary brain parenchymal damage, the enduring biological consequences of traumatic brain injury pose long-term risks for patients with traumatic brain injury; however, the underlying pathogenesis remains unclear, and effective intervention methods are lacking. Intestinal dysfunction is a significant consequence of traumatic brain injury. Being the most densely innervated peripheral tissue in the body, the gut possesses multiple pathways for the establishment of a bidirectional \"brain-gut axis\" with the central nervous system. The gut harbors a vast microbial community, and alterations of the gut niche contribute to the progression of traumatic brain injury and its unfavorable prognosis through neuronal, hormonal, and immune pathways. A comprehensive understanding of microbiota-mediated peripheral neuroimmunomodulation mechanisms is needed to enhance treatment strategies for traumatic brain injury and its associated complications. We comprehensively reviewed alterations in the gut microecological environment following traumatic brain injury, with a specific focus on the complex biological processes of peripheral nerves, immunity, and microbes triggered by traumatic brain injury, encompassing autonomic dysfunction, neuroendocrine disturbances, peripheral immunosuppression, increased intestinal barrier permeability, compromised responses of sensory nerves to microorganisms, and potential effector nuclei in the central nervous system influenced by gut microbiota. Additionally, we reviewed the mechanisms underlying secondary biological injury and the dynamic pathological responses that occur following injury to enhance our current understanding of how peripheral pathways impact the outcome of patients with traumatic brain injury. This review aimed to propose a conceptual model for future risk assessment of central nervous system-related diseases while elucidating novel insights into the bidirectional effects of the \"brain-gut-microbiota axis.\"</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"20 8","pages":"2153-2168"},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Central role of altered phosphodiesterase 2-dependent signaling in the pathophysiology of cognition-based brain disorders. 改变的磷酸二酯酶 2 依赖性信号在以认知为基础的大脑疾病的病理生理学中的核心作用。
IF 5.9 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2025-08-01 Epub Date: 2024-07-29 DOI: 10.4103/NRR.NRR-D-24-00588
Asma Boulksibat, Alessandra Tempio, Barbara Bardoni
{"title":"Central role of altered phosphodiesterase 2-dependent signaling in the pathophysiology of cognition-based brain disorders.","authors":"Asma Boulksibat, Alessandra Tempio, Barbara Bardoni","doi":"10.4103/NRR.NRR-D-24-00588","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-24-00588","url":null,"abstract":"","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"20 8","pages":"2302-2303"},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying the Fascicular Changes in Recovered Achilles Tendon Patients Using Diffusion Magnetic Resonance Imaging and Tractography. 利用弥散磁共振成像和韧带造影术量化跟腱康复患者的筋膜变化
Journal of engineering and science in medical diagnostics and therapy Pub Date : 2025-08-01 Epub Date: 2024-10-16 DOI: 10.1115/1.4066623
Shabnam Rahimnezhad, Tanzil M Arefin, Xiaoxiao Bai, Thomas Neuberger, Daniel Cortes
{"title":"Quantifying the Fascicular Changes in Recovered Achilles Tendon Patients Using Diffusion Magnetic Resonance Imaging and Tractography.","authors":"Shabnam Rahimnezhad, Tanzil M Arefin, Xiaoxiao Bai, Thomas Neuberger, Daniel Cortes","doi":"10.1115/1.4066623","DOIUrl":"https://doi.org/10.1115/1.4066623","url":null,"abstract":"<p><p>Regardless of the way of treatment, persistent deficits in calf muscles in recovered patients from Achilles tendon rupture (ATR) exist long-term postinjury. Studies on calf muscle changes mostly highlight morphological changes in the calf muscles and Achilles tendon. However, limited attention has been given to fascicular changes. Diffusion tensor imaging (DTI) can provide a better understanding of the characteristics and properties of tissues with organized microstructure. In the current study, we used DTI-derived indices (mean diffusivity (MD), fractional anisotropy (FA), and eigenvalues-<i>λ</i> <sub>1</sub>, <i>λ</i> <sub>2</sub>, and <i>λ</i> <sub>3</sub>) and fiber tractography to better understand the soleus muscle after recovery from ATR by comparing the results of injured legs with healthy ones. Our findings suggest that the standard deviations of measured parameters (FA, MD, and eigenvalues) within the soleus muscle are better predictors of the changes associated with the ATR as compared to the control counterpart for the volumetric region of interest (ROI). Additionally, in four out of five participants, smaller tracts were observed in the injured leg compared to the healthy one, as evidenced by the fiber length distribution of the tracts. Altogether, this study demonstrates the feasibility of the DTI and fiber tractography approaches to quantify the fascicular changes in the individuals recovered from ATR.</p>","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"8 3","pages":"031006"},"PeriodicalIF":0.0,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515863/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of P301L-TAU on post-translational modifications of microtubules in human iPSC-derived cortical neurons and TAU transgenic mice. P301L-TAU对人类iPSC衍生皮质神经元和TAU转基因小鼠微管翻译后修饰的影响
IF 5.9 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2025-08-01 Epub Date: 2024-06-26 DOI: 10.4103/NRR.NRR-D-23-01742
Mohamed Aghyad Al Kabbani, Christoph Köhler, Hans Zempel
{"title":"Effects of P301L-TAU on post-translational modifications of microtubules in human iPSC-derived cortical neurons and TAU transgenic mice.","authors":"Mohamed Aghyad Al Kabbani, Christoph Köhler, Hans Zempel","doi":"10.4103/NRR.NRR-D-23-01742","DOIUrl":"10.4103/NRR.NRR-D-23-01742","url":null,"abstract":"<p><p>JOURNAL/nrgr/04.03/01300535-202508000-00025/figure1/v/2024-09-30T120553Z/r/image-tiff TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon. TAU is missorted and aggregated in an array of diseases known as tauopathies. Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications, changes of which affect microtubule stability and dynamics, microtubule interaction with other proteins and cellular structures, and mediate recruitment of microtubule-severing enzymes. As impairment of microtubule dynamics causes neuronal dysfunction, we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics. We therefore aimed to study the effects of a disease-causing mutation of TAU (P301L) on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics, to assess whether P301L-TAU causes stability-changing modifications to microtubules. To investigate TAU localization, phosphorylation, and effects on tubulin post-translational modifications, we expressed wild-type or P301L-TAU in human MAPT -KO induced pluripotent stem cell-derived neurons (iNeurons) and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU (pR5 mice). Human neurons expressing the longest TAU isoform (2N4R) with the P301L mutation showed increased TAU phosphorylation at the AT8, but not the p-Ser-262 epitope, and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons. P301L-TAU showed pronounced somatodendritic presence, but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU. P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation, but reduced acetylation, of microtubules compared with non-transgenic littermates. In sum, P301L-TAU results in changes in microtubule PTMs, suggestive of impairment of microtubule stability. This is accompanied by missorting and aggregation of TAU in mice but not in iNeurons. Microtubule PTMs/impairment may be of key importance in tauopathies.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"2348-2360"},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain age estimation: premise, promise, and problems. 脑龄估计:前提、前景和问题。
IF 5.9 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2025-08-01 Epub Date: 2024-07-29 DOI: 10.4103/NRR.NRR-D-24-00388
Jarrad Perron, Ji Hyun Ko
{"title":"Brain age estimation: premise, promise, and problems.","authors":"Jarrad Perron, Ji Hyun Ko","doi":"10.4103/NRR.NRR-D-24-00388","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-24-00388","url":null,"abstract":"","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"20 8","pages":"2313-2314"},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carboplatin restores neuronal toxicity in FUS-linked amyotrophic lateral sclerosis. 卡铂可恢复 FUS 连锁肌萎缩性脊髓侧索硬化症患者神经元的毒性。
IF 5.9 2区 材料科学
ACS Applied Materials & Interfaces Pub Date : 2025-08-01 Epub Date: 2024-09-06 DOI: 10.4103/NRR.NRR-D-24-00489
Kiyoung Kim
{"title":"Carboplatin restores neuronal toxicity in FUS-linked amyotrophic lateral sclerosis.","authors":"Kiyoung Kim","doi":"10.4103/NRR.NRR-D-24-00489","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-24-00489","url":null,"abstract":"","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"20 8","pages":"2319-2320"},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信