全部最新文献

筛选
英文 中文
Harnessing therapeutic potential of induced pluripotent stem cell-derived endothelial cells for remyelination in the central nervous system. 利用诱导多能干细胞衍生内皮细胞的治疗潜力,促进中枢神经系统的髓鞘再形成。
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-06-01 Epub Date: 2024-06-26 DOI: 10.4103/NRR.NRR-D-24-00209
Dan Ma, Nona Pop
{"title":"Harnessing therapeutic potential of induced pluripotent stem cell-derived endothelial cells for remyelination in the central nervous system.","authors":"Dan Ma, Nona Pop","doi":"10.4103/NRR.NRR-D-24-00209","DOIUrl":"10.4103/NRR.NRR-D-24-00209","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism by which Rab5 promotes regeneration and functional recovery of zebrafish Mauthner axons. Rab5 促进斑马鱼毛氏轴突再生和功能恢复的机制
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-06-01 Epub Date: 2024-04-03 DOI: 10.4103/NRR.NRR-D-23-00529
Jiantao Cui, Yueru Shen, Zheng Song, Dinggang Fan, Bing Hu
{"title":"Mechanism by which Rab5 promotes regeneration and functional recovery of zebrafish Mauthner axons.","authors":"Jiantao Cui, Yueru Shen, Zheng Song, Dinggang Fan, Bing Hu","doi":"10.4103/NRR.NRR-D-23-00529","DOIUrl":"10.4103/NRR.NRR-D-23-00529","url":null,"abstract":"<p><p>JOURNAL/nrgr/04.03/01300535-202506000-00031/figure1/v/2024-08-05T133530Z/r/image-tiff Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles and their fusion with the cellular membrane. Rab5 has been reported to play an important role in the development of the zebrafish embryo; however, its role in axonal regeneration in the central nervous system remains unclear. In this study, we established a zebrafish Mauthner cell model of axonal injury using single-cell electroporation and two-photon axotomy techniques. We found that overexpression of Rab5 in single Mauthner cells promoted marked axonal regeneration and increased the number of intra-axonal transport vesicles. In contrast, treatment of zebrafish larvae with the Rab kinase inhibitor CID-1067700 markedly inhibited axonal regeneration in Mauthner cells. We also found that Rab5 activated phosphatidylinositol 3-kinase (PI3K) during axonal repair of Mauthner cells and promoted the recovery of zebrafish locomotor function. Additionally, rapamycin, an inhibitor of the mechanistic target of rapamycin downstream of PI3K, markedly hindered axonal regeneration. These findings suggest that Rab5 promotes the axonal regeneration of injured zebrafish Mauthner cells by activating the PI3K signaling pathway.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential role of tanycyte-derived neurogenesis in Alzheimer's disease. 澹细胞源性神经发生在阿尔茨海默病中的潜在作用
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-06-01 Epub Date: 2024-06-26 DOI: 10.4103/NRR.NRR-D-23-01865
Guibo Qi, Han Tang, Jianian Hu, Siying Kang, Song Qin
{"title":"Potential role of tanycyte-derived neurogenesis in Alzheimer's disease.","authors":"Guibo Qi, Han Tang, Jianian Hu, Siying Kang, Song Qin","doi":"10.4103/NRR.NRR-D-23-01865","DOIUrl":"10.4103/NRR.NRR-D-23-01865","url":null,"abstract":"<p><p>Tanycytes, specialized ependymal cells located in the hypothalamus, play a crucial role in the generation of new neurons that contribute to the neural circuits responsible for regulating the systemic energy balance. The precise coordination of the gene networks controlling neurogenesis in naive and mature tanycytes is essential for maintaining homeostasis in adulthood. However, our understanding of the molecular mechanisms and signaling pathways that govern the proliferation and differentiation of tanycytes into neurons remains limited. This article aims to review the recent advancements in research into the mechanisms and functions of tanycyte-derived neurogenesis. Studies employing lineage-tracing techniques have revealed that the neurogenesis specifically originating from tanycytes in the hypothalamus has a compensatory role in neuronal loss and helps maintain energy homeostasis during metabolic diseases. Intriguingly, metabolic disorders are considered early biomarkers of Alzheimer's disease. Furthermore, the neurogenic potential of tanycytes and the state of newborn neurons derived from tanycytes heavily depend on the maintenance of mild microenvironments, which may be disrupted in Alzheimer's disease due to the impaired blood-brain barrier function. However, the specific alterations and regulatory mechanisms governing tanycyte-derived neurogenesis in Alzheimer's disease remain unclear. Accumulating evidence suggests that tanycyte-derived neurogenesis might be impaired in Alzheimer's disease, exacerbating neurodegeneration. Confirming this hypothesis, however, poses a challenge because of the lack of long-term tracing and nucleus-specific analyses of newborn neurons in the hypothalamus of patients with Alzheimer's disease. Further research into the molecular mechanisms underlying tanycyte-derived neurogenesis holds promise for identifying small molecules capable of restoring tanycyte proliferation in neurodegenerative diseases. This line of investigation could provide valuable insights into potential therapeutic strategies for Alzheimer's disease and related conditions.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging insights into the function of very long chain fatty acids at cerebellar synapses. 小脑突触中长链脂肪酸功能的新发现
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-06-01 Epub Date: 2024-07-10 DOI: 10.4103/NRR.NRR-D-24-00436
Martin-Paul Agbaga, Mohiuddin Ahmad
{"title":"Emerging insights into the function of very long chain fatty acids at cerebellar synapses.","authors":"Martin-Paul Agbaga, Mohiuddin Ahmad","doi":"10.4103/NRR.NRR-D-24-00436","DOIUrl":"10.4103/NRR.NRR-D-24-00436","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remaking a connection: molecular players involved in post-injury synapse formation. 重塑连接:参与损伤后突触形成的分子角色。
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-06-01 Epub Date: 2024-06-26 DOI: 10.4103/NRR.NRR-D-24-00265
Diogo Tomé, Ramiro D Almeida
{"title":"Remaking a connection: molecular players involved in post-injury synapse formation.","authors":"Diogo Tomé, Ramiro D Almeida","doi":"10.4103/NRR.NRR-D-24-00265","DOIUrl":"10.4103/NRR.NRR-D-24-00265","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell pan-omics, environmental neurology, and artificial intelligence: the time for holistic brain health research. 单细胞泛组学、环境神经学和人工智能:全面脑健康研究的时代。
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-06-01 Epub Date: 2024-06-26 DOI: 10.4103/NRR.NRR-D-24-00324
Paolo Abondio, Francesco Bruno
{"title":"Single-cell pan-omics, environmental neurology, and artificial intelligence: the time for holistic brain health research.","authors":"Paolo Abondio, Francesco Bruno","doi":"10.4103/NRR.NRR-D-24-00324","DOIUrl":"10.4103/NRR.NRR-D-24-00324","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of the globus pallidus in motor and non-motor symptoms of Parkinson's disease. 苍白球在帕金森病运动和非运动症状中的作用。
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-06-01 Epub Date: 2024-06-03 DOI: 10.4103/NRR.NRR-D-23-01660
Yimiao Jiang, Zengxin Qi, Huixian Zhu, Kangli Shen, Ruiqi Liu, Chenxin Fang, Weiwei Lou, Yifan Jiang, Wangrui Yuan, Xin Cao, Liang Chen, Qianxing Zhuang
{"title":"Role of the globus pallidus in motor and non-motor symptoms of Parkinson's disease.","authors":"Yimiao Jiang, Zengxin Qi, Huixian Zhu, Kangli Shen, Ruiqi Liu, Chenxin Fang, Weiwei Lou, Yifan Jiang, Wangrui Yuan, Xin Cao, Liang Chen, Qianxing Zhuang","doi":"10.4103/NRR.NRR-D-23-01660","DOIUrl":"10.4103/NRR.NRR-D-23-01660","url":null,"abstract":"<p><p>The globus pallidus plays a pivotal role in the basal ganglia circuit. Parkinson's disease is characterized by degeneration of dopamine-producing cells in the substantia nigra, which leads to dopamine deficiency in the brain that subsequently manifests as various motor and non-motor symptoms. This review aims to summarize the involvement of the globus pallidus in both motor and non-motor manifestations of Parkinson's disease. The firing activities of parvalbumin neurons in the medial globus pallidus, including both the firing rate and pattern, exhibit strong correlations with the bradykinesia and rigidity associated with Parkinson's disease. Increased beta oscillations, which are highly correlated with bradykinesia and rigidity, are regulated by the lateral globus pallidus. Furthermore, bradykinesia and rigidity are strongly linked to the loss of dopaminergic projections within the cortical-basal ganglia-thalamocortical loop. Resting tremors are attributed to the transmission of pathological signals from the basal ganglia through the motor cortex to the cerebellum-ventral intermediate nucleus circuit. The cortico-striato-pallidal loop is responsible for mediating pallidi-associated sleep disorders. Medication and deep brain stimulation are the primary therapeutic strategies addressing the globus pallidus in Parkinson's disease. Medication is the primary treatment for motor symptoms in the early stages of Parkinson's disease, while deep brain stimulation has been clinically proven to be effective in alleviating symptoms in patients with advanced Parkinson's disease, particularly for the movement disorders caused by levodopa. Deep brain stimulation targeting the globus pallidus internus can improve motor function in patients with tremor-dominant and non-tremor-dominant Parkinson's disease, while deep brain stimulation targeting the globus pallidus externus can alter the temporal pattern of neural activity throughout the basal ganglia-thalamus network. Therefore, the composition of the globus pallidus neurons, the neurotransmitters that act on them, their electrical activity, and the neural circuits they form can guide the search for new multi-target drugs to treat Parkinson's disease in clinical practice. Examining the potential intra-nuclear and neural circuit mechanisms of deep brain stimulation associated with the globus pallidus can facilitate the management of both motor and non-motor symptoms while minimizing the side effects caused by deep brain stimulation.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurogenesis dynamics in the olfactory bulb: deciphering circuitry organization, function, and adaptive plasticity. 嗅球的神经发生动态:破译电路组织、功能和适应性可塑性。
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-06-01 Epub Date: 2024-06-26 DOI: 10.4103/NRR.NRR-D-24-00312
Moawiah M Naffaa
{"title":"Neurogenesis dynamics in the olfactory bulb: deciphering circuitry organization, function, and adaptive plasticity.","authors":"Moawiah M Naffaa","doi":"10.4103/NRR.NRR-D-24-00312","DOIUrl":"10.4103/NRR.NRR-D-24-00312","url":null,"abstract":"<p><p>Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover, the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peripheral mitochondrial DNA as a neuroinflammatory biomarker for major depressive disorder. 外周线粒体 DNA 作为重度抑郁症的神经炎症生物标志物。
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-06-01 Epub Date: 2024-06-26 DOI: 10.4103/NRR.NRR-D-23-01878
Jinmei Ye, Cong Duan, Jiaxin Han, Jinrong Chen, Ning Sun, Yuan Li, Tifei Yuan, Daihui Peng
{"title":"Peripheral mitochondrial DNA as a neuroinflammatory biomarker for major depressive disorder.","authors":"Jinmei Ye, Cong Duan, Jiaxin Han, Jinrong Chen, Ning Sun, Yuan Li, Tifei Yuan, Daihui Peng","doi":"10.4103/NRR.NRR-D-23-01878","DOIUrl":"10.4103/NRR.NRR-D-23-01878","url":null,"abstract":"<p><p>In the pathogenesis of major depressive disorder, chronic stress-related neuroinflammation hinders favorable prognosis and antidepressant response. Mitochondrial DNA may be an inflammatory trigger, after its release from stress-induced dysfunctional central nervous system mitochondria into peripheral circulation. This evidence supports the potential use of peripheral mitochondrial DNA as a neuroinflammatory biomarker for the diagnosis and treatment of major depressive disorder. Herein, we critically review the neuroinflammation theory in major depressive disorder, providing compelling evidence that mitochondrial DNA release acts as a critical biological substrate, and that it constitutes the neuroinflammatory disease pathway. After its release, mitochondrial DNA can be carried in the exosomes and transported to extracellular spaces in the central nervous system and peripheral circulation. Detectable exosomes render encaged mitochondrial DNA relatively stable. This mitochondrial DNA in peripheral circulation can thus be directly detected in clinical practice. These characteristics illustrate the potential for mitochondrial DNA to serve as an innovative clinical biomarker and molecular treatment target for major depressive disorder. This review also highlights the future potential value of clinical applications combining mitochondrial DNA with a panel of other biomarkers, to improve diagnostic precision in major depressive disorder.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decline and fall of aging astrocytes: the human perspective. 衰老星形胶质细胞的衰退与衰亡:人类视角。
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-06-01 Epub Date: 2024-06-26 DOI: 10.4103/NRR.NRR-D-24-00418
Alexei Verkhratsky, Alexey Semyanov
{"title":"Decline and fall of aging astrocytes: the human perspective.","authors":"Alexei Verkhratsky, Alexey Semyanov","doi":"10.4103/NRR.NRR-D-24-00418","DOIUrl":"10.4103/NRR.NRR-D-24-00418","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信