全部最新文献

筛选
英文 中文
Crosstalk among canonical Wnt and Hippo pathway members in skeletal muscle and at the neuromuscular junction. 骨骼肌和神经肌肉接头处的典型 Wnt 和 Hippo 通路成员之间的相互作用
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-09-01 Epub Date: 2024-09-06 DOI: 10.4103/NRR.NRR-D-24-00417
Said Hashemolhosseini, Lea Gessler
{"title":"Crosstalk among canonical Wnt and Hippo pathway members in skeletal muscle and at the neuromuscular junction.","authors":"Said Hashemolhosseini, Lea Gessler","doi":"10.4103/NRR.NRR-D-24-00417","DOIUrl":"10.4103/NRR.NRR-D-24-00417","url":null,"abstract":"<p><p>Skeletal muscles are essential for locomotion, posture, and metabolic regulation. To understand physiological processes, exercise adaptation, and muscle-related disorders, it is critical to understand the molecular pathways that underlie skeletal muscle function. The process of muscle contraction, orchestrated by a complex interplay of molecular events, is at the core of skeletal muscle function. Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction. Within muscle fibers, calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force. Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling. The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis. Myogenic regulators coordinate the differentiation of myoblasts into mature muscle fibers. Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability. Several muscle-related diseases, including congenital myasthenic disorders, sarcopenia, muscular dystrophies, and metabolic myopathies, are underpinned by dysregulated molecular pathways in skeletal muscle. Therapeutic interventions aimed at preserving muscle mass and function, enhancing regeneration, and improving metabolic health hold promise by targeting specific molecular pathways. Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway, a critical regulator of myogenesis, muscle regeneration, and metabolic function, and the Hippo signaling pathway. In recent years, more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers, and at the neuromuscular junction. In fact, research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers. In this review, we will summarize and discuss the data on these two pathways, focusing on their concerted action next to their contribution to skeletal muscle biology. However, an in-depth discussion of the non-canonical Wnt pathway, the fibro/adipogenic precursors, or the mechanosensory aspects of these pathways is not the focus of this review.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitophagy in acute central nervous system injuries: regulatory mechanisms and therapeutic potentials. 急性中枢神经系统损伤中的有丝分裂:调控机制和治疗潜力。
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-09-01 Epub Date: 2024-09-06 DOI: 10.4103/NRR.NRR-D-24-00432
Siyi Xu, Junqiu Jia, Rui Mao, Xiang Cao, Yun Xu
{"title":"Mitophagy in acute central nervous system injuries: regulatory mechanisms and therapeutic potentials.","authors":"Siyi Xu, Junqiu Jia, Rui Mao, Xiang Cao, Yun Xu","doi":"10.4103/NRR.NRR-D-24-00432","DOIUrl":"10.4103/NRR.NRR-D-24-00432","url":null,"abstract":"<p><p>Acute central nervous system injuries, including ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, traumatic brain injury, and spinal cord injury, are a major global health challenge. Identifying optimal therapies and improving the long-term neurological functions of patients with acute central nervous system injuries are urgent priorities. Mitochondria are susceptible to damage after acute central nervous system injury, and this leads to the release of toxic levels of reactive oxygen species, which induce cell death. Mitophagy, a selective form of autophagy, is crucial in eliminating redundant or damaged mitochondria during these events. Recent evidence has highlighted the significant role of mitophagy in acute central nervous system injuries. In this review, we provide a comprehensive overview of the process, classification, and related mechanisms of mitophagy. We also highlight the recent developments in research into the role of mitophagy in various acute central nervous system injuries and drug therapies that regulate mitophagy. In the final section of this review, we emphasize the potential for treating these disorders by focusing on mitophagy and suggest future research paths in this area.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blood diagnostic and prognostic biomarkers in amyotrophic lateral sclerosis. 肌萎缩性脊髓侧索硬化症的血液诊断和预后生物标志物。
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-09-01 Epub Date: 2024-09-24 DOI: 10.4103/NRR.NRR-D-24-00286
Yongting Lv, Hongfu Li
{"title":"Blood diagnostic and prognostic biomarkers in amyotrophic lateral sclerosis.","authors":"Yongting Lv, Hongfu Li","doi":"10.4103/NRR.NRR-D-24-00286","DOIUrl":"10.4103/NRR.NRR-D-24-00286","url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited. The principal pathological alterations of the disease include the selective degeneration of motor neurons in the brain, brainstem, and spinal cord, as well as abnormal protein deposition in the cytoplasm of neurons and glial cells. The biological markers under extensive scrutiny are predominantly located in the cerebrospinal fluid, blood, and even urine. Among these biomarkers, neurofilament proteins and glial fibrillary acidic protein most accurately reflect the pathologic changes in the central nervous system, while creatinine and creatine kinase mainly indicate pathological alterations in the peripheral nerves and muscles. Neurofilament light chain levels serve as an indicator of neuronal axonal injury that remain stable throughout disease progression and are a promising diagnostic and prognostic biomarker with high specificity and sensitivity. However, there are challenges in using neurofilament light chain to differentiate amyotrophic lateral sclerosis from other central nervous system diseases with axonal injury. Glial fibrillary acidic protein predominantly reflects the degree of neuronal demyelination and is linked to non-motor symptoms of amyotrophic lateral sclerosis such as cognitive impairment, oxygen saturation, and the glomerular filtration rate. TAR DNA-binding protein 43, a pathological protein associated with amyotrophic lateral sclerosis, is emerging as a promising biomarker, particularly with advancements in exosome-related research. Evidence is currently lacking for the value of creatinine and creatine kinase as diagnostic markers; however, they show potential in predicting disease prognosis. Despite the vigorous progress made in the identification of amyotrophic lateral sclerosis biomarkers in recent years, the quest for definitive diagnostic and prognostic biomarkers remains a formidable challenge. This review summarizes the latest research achievements concerning blood biomarkers in amyotrophic lateral sclerosis that can provide a more direct basis for the differential diagnosis and prognostic assessment of the disease beyond a reliance on clinical manifestations and electromyography findings.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-dose dexamethasone regulates microglial polarization via the GR/JAK1/STAT3 signaling pathway after traumatic brain injury. 脑外伤后,大剂量地塞米松通过GR/JAK1/STAT3信号通路调节小胶质细胞极化。
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-09-01 Epub Date: 2024-09-24 DOI: 10.4103/NRR.NRR-D-23-01772
Mengshi Yang, Miao Bai, Yuan Zhuang, Shenghua Lu, Qianqian Ge, Hao Li, Yu Deng, Hongbin Wu, Xiaojian Xu, Fei Niu, Xinlong Dong, Bin Zhang, Baiyun Liu
{"title":"High-dose dexamethasone regulates microglial polarization via the GR/JAK1/STAT3 signaling pathway after traumatic brain injury.","authors":"Mengshi Yang, Miao Bai, Yuan Zhuang, Shenghua Lu, Qianqian Ge, Hao Li, Yu Deng, Hongbin Wu, Xiaojian Xu, Fei Niu, Xinlong Dong, Bin Zhang, Baiyun Liu","doi":"10.4103/NRR.NRR-D-23-01772","DOIUrl":"10.4103/NRR.NRR-D-23-01772","url":null,"abstract":"<p><p>JOURNAL/nrgr/04.03/01300535-202509000-00023/figure1/v/2024-11-05T132919Z/r/image-tiff Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury, the fundamental regulatory and functional mechanisms remain insufficiently understood. As potent anti-inflammatory agents, the use of glucocorticoids in traumatic brain injury is still controversial, and their regulatory effects on microglial polarization are not yet known. In the present study, we sought to determine whether exacerbation of traumatic brain injury caused by high-dose dexamethasone is related to its regulatory effects on microglial polarization and its mechanisms of action. In vitro cultured BV2 cells and primary microglia and a controlled cortical impact mouse model were used to investigate the effects of dexamethasone on microglial polarization. Lipopolysaccharide, dexamethasone, RU486 (a glucocorticoid receptor antagonist), and ruxolitinib (a Janus kinase 1 antagonist) were administered. RNA-sequencing data obtained from a C57BL/6 mouse model of traumatic brain injury were used to identify potential targets of dexamethasone. The Morris water maze, quantitative reverse transcription-polymerase chain reaction, western blotting, immunofluorescence and confocal microscopy analysis, and TUNEL, Nissl, and Golgi staining were performed to investigate our hypothesis. High-throughput sequencing results showed that arginase 1, a marker of M2 microglia, was significantly downregulated in the dexamethasone group compared with the traumatic brain injury group at 3 days post-traumatic brain injury. Thus dexamethasone inhibited M1 and M2 microglia, with a more pronounced inhibitory effect on M2 microglia in vitro and in vivo . Glucocorticoid receptor plays an indispensable role in microglial polarization after dexamethasone treatment following traumatic brain injury. Additionally, glucocorticoid receptor activation increased the number of apoptotic cells and neuronal death, and also decreased the density of dendritic spines. A possible downstream receptor signaling mechanism is the GR/JAK1/STAT3 pathway. Overactivation of glucocorticoid receptor by high-dose dexamethasone reduced the expression of M2 microglia, which plays an anti-inflammatory role. In contrast, inhibiting the activation of glucocorticoid receptor reduced the number of apoptotic glia and neurons and decreased the loss of dendritic spines after traumatic brain injury. Dexamethasone may exert its neurotoxic effects by inhibiting M2 microglia through the GR/JAK1/STAT3 signaling pathway.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nucleoside modified mRNA-lipid nanoparticles as a new delivery platform for the repair of the injured spinal cord. 核苷修饰的 mRNA 脂质纳米粒子作为修复损伤脊髓的新传输平台。
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-08-01 Epub Date: 2024-09-06 DOI: 10.4103/NRR.NRR-D-23-01231
Krisztián Pajer, Tamás Bellák, Antal Nógrádi
{"title":"Nucleoside modified mRNA-lipid nanoparticles as a new delivery platform for the repair of the injured spinal cord.","authors":"Krisztián Pajer, Tamás Bellák, Antal Nógrádi","doi":"10.4103/NRR.NRR-D-23-01231","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-23-01231","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Zika virus non-structural protein mutations on hippocampal damage. 寨卡病毒非结构蛋白突变对海马损伤的影响
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-08-01 Epub Date: 2024-07-29 DOI: 10.4103/NRR.NRR-D-24-00493
Larissa M G Cassiano, Roney S Coimbra
{"title":"Impact of Zika virus non-structural protein mutations on hippocampal damage.","authors":"Larissa M G Cassiano, Roney S Coimbra","doi":"10.4103/NRR.NRR-D-24-00493","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-24-00493","url":null,"abstract":"","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilizing engineered extracellular vesicles as delivery vectors in the management of ischemic stroke: a special outlook on mitochondrial delivery. 利用工程细胞外囊泡作为输送载体治疗缺血性中风:线粒体输送的特殊前景。
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-08-01 Epub Date: 2024-07-29 DOI: 10.4103/NRR.NRR-D-24-00243
Jiali Chen, Yiyang Li, Xingping Quan, Jinfen Chen, Yan Han, Li Yang, Manfei Zhou, Greta Seng Peng Mok, Ruibing Wang, Yonghua Zhao
{"title":"Utilizing engineered extracellular vesicles as delivery vectors in the management of ischemic stroke: a special outlook on mitochondrial delivery.","authors":"Jiali Chen, Yiyang Li, Xingping Quan, Jinfen Chen, Yan Han, Li Yang, Manfei Zhou, Greta Seng Peng Mok, Ruibing Wang, Yonghua Zhao","doi":"10.4103/NRR.NRR-D-24-00243","DOIUrl":"10.4103/NRR.NRR-D-24-00243","url":null,"abstract":"<p><p>Ischemic stroke is a secondary cause of mortality worldwide, imposing considerable medical and economic burdens on society. Extracellular vesicles, serving as natural nano-carriers for drug delivery, exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke. However, the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency. By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles, their delivery efficacy may be greatly improved. Furthermore, previous studies have indicated that microvesicles, a subset of large-sized extracellular vesicles, can transport mitochondria to neighboring cells, thereby aiding in the restoration of mitochondrial function post-ischemic stroke. Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components, such as proteins or deoxyribonucleic acid, or their sub-components, for extracellular vesicle-based ischemic stroke therapy. In this review, we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies. Given the complex facets of treating ischemic stroke, we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process. Moreover, given the burgeoning interest in mitochondrial delivery, we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interconnections between diabetic corneal neuropathy and diabetic retinopathy: diagnostic and therapeutic implications. 糖尿病角膜神经病变与糖尿病视网膜病变之间的相互联系:诊断和治疗意义。
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-08-01 Epub Date: 2024-09-20 DOI: 10.4103/NRR.NRR-D-24-00509
Mingyi Yu, Faith Teo En Ning, Chang Liu, Yu-Chi Liu
{"title":"Interconnections between diabetic corneal neuropathy and diabetic retinopathy: diagnostic and therapeutic implications.","authors":"Mingyi Yu, Faith Teo En Ning, Chang Liu, Yu-Chi Liu","doi":"10.4103/NRR.NRR-D-24-00509","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-24-00509","url":null,"abstract":"<p><p>Diabetic corneal neuropathy and diabetic retinopathy are ocular complications occurring in the context of diabetes mellitus. Diabetic corneal neuropathy refers to the progressive damage of corneal nerves. Diabetic retinopathy has traditionally been considered as damage to the retinal microvasculature. However, growing evidence suggests that diabetic retinopathy is a complex neurovascular disorder resulting from dysfunction of the neurovascular unit, which includes both the retinal vascular structures and neural tissues. Diabetic retinopathy is one of the leading causes of blindness and is frequently screened for as part of diabetic ocular screening. However, diabetic corneal neuropathy is commonly overlooked and underdiagnosed, leading to severe ocular surface impairment. Several studies have found that these two conditions tend to occur together, and they share similarities in their pathogenesis pathways, being triggered by a status of chronic hyperglycemia. This review aims to discuss the interconnection between diabetic corneal neuropathy and diabetic retinopathy, whether diabetic corneal neuropathy precedes diabetic retinopathy, as well as the relation between the stage of diabetic retinopathy and the severity of corneal neuropathy. We also endeavor to explore the relevance of a corneal screening in diabetic eyes and the possibility of using corneal nerve measurements to monitor the progression of diabetic retinopathy.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Storage time affects the level and diagnostic efficacy of plasma biomarkers for neurodegenerative diseases. 储存时间会影响神经退行性疾病血浆生物标记物的水平和诊断效果。
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-08-01 Epub Date: 2024-04-16 DOI: 10.4103/NRR.NRR-D-23-01983
Lifang Zhao, Mingkai Zhang, Qimeng Li, Xuemin Wang, Jie Lu, Ying Han, Yanning Cai
{"title":"Storage time affects the level and diagnostic efficacy of plasma biomarkers for neurodegenerative diseases.","authors":"Lifang Zhao, Mingkai Zhang, Qimeng Li, Xuemin Wang, Jie Lu, Ying Han, Yanning Cai","doi":"10.4103/NRR.NRR-D-23-01983","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-23-01983","url":null,"abstract":"<p><p>JOURNAL/nrgr/04.03/01300535-202508000-00027/figure1/v/2024-09-30T120553Z/r/image-tiff Several promising plasma biomarker proteins, such as amyloid-β (Aβ), tau, neurofilament light chain, and glial fibrillary acidic protein, are widely used for the diagnosis of neurodegenerative diseases. However, little is known about the long-term stability of these biomarker proteins in plasma samples stored at -80°C. We aimed to explore how storage time would affect the diagnostic accuracy of these biomarkers using a large cohort. Plasma samples from 229 cognitively unimpaired individuals, encompassing healthy controls and those experiencing subjective cognitive decline, as well as 99 patients with cognitive impairment, comprising those with mild cognitive impairment and dementia, were acquired from the Sino Longitudinal Study on Cognitive Decline project. These samples were stored at -80°C for up to 6 years before being used in this study. Our results showed that plasma levels of Aβ42, Aβ40, neurofilament light chain, and glial fibrillary acidic protein were not significantly correlated with sample storage time. However, the level of total tau showed a negative correlation with sample storage time. Notably, in individuals without cognitive impairment, plasma levels of total protein and tau phosphorylated protein threonine 181 (p-tau181)also showed a negative correlation with sample storage time. This was not observed in individuals with cognitive impairment. Consequently, we speculate that the diagnostic accuracy of plasma p-tau181 and the p-tau181 to total tau ratio may be influenced by sample storage time. Therefore, caution is advised when using these plasma biomarkers for the identification of neurodegenerative diseases, such as Alzheimer's disease. Furthermore, in cohort studies, it is important to consider the impact of storage time on the overall results.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diabetic peripheral neuropathy and neuromodulation techniques: a systematic review of progress and prospects. 糖尿病周围神经病变与神经调控技术:进展与前景系统回顾。
IF 5.9 2区 医学
Neural Regeneration Research Pub Date : 2025-08-01 Epub Date: 2024-09-06 DOI: 10.4103/NRR.NRR-D-24-00270
Rahul Mittal, Keelin McKenna, Grant Keith, Evan McKenna, Joana R N Lemos, Jeenu Mittal, Khemraj Hirani
{"title":"Diabetic peripheral neuropathy and neuromodulation techniques: a systematic review of progress and prospects.","authors":"Rahul Mittal, Keelin McKenna, Grant Keith, Evan McKenna, Joana R N Lemos, Jeenu Mittal, Khemraj Hirani","doi":"10.4103/NRR.NRR-D-24-00270","DOIUrl":"https://doi.org/10.4103/NRR.NRR-D-24-00270","url":null,"abstract":"<p><p>Neuromodulation for diabetic peripheral neuropathy represents a significant area of interest in the management of chronic pain associated with this condition. Diabetic peripheral neuropathy, a common complication of diabetes, is characterized by nerve damage due to high blood sugar levels that lead to symptoms, such as pain, tingling, and numbness, primarily in the hands and feet. The aim of this systematic review was to evaluate the efficacy of neuromodulatory techniques as potential therapeutic interventions for patients with diabetic peripheral neuropathy, while also examining recent developments in this domain. The investigation encompassed an array of neuromodulation methods, including frequency rhythmic electrical modulated systems, dorsal root ganglion stimulation, and spinal cord stimulation. This systematic review suggests that neuromodulatory techniques may be useful in the treatment of diabetic peripheral neuropathy. Understanding the advantages of these treatments will enable physicians and other healthcare providers to offer additional options for patients with symptoms refractory to standard pharmacologic treatments. Through these efforts, we may improve quality of life and increase functional capacity in patients suffering from complications related to diabetic neuropathy.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信