无创脑刺激对中枢神经系统缺血和创伤动物模型运动功能的影响。

IF 5.9 2区 医学 Q2 CELL BIOLOGY
Neural Regeneration Research Pub Date : 2026-04-01 Epub Date: 2025-06-19 DOI:10.4103/NRR.NRR-D-24-01613
Seda Demir, Gereon R Fink, Maria A Rueger, Stefan J Blaschke
{"title":"无创脑刺激对中枢神经系统缺血和创伤动物模型运动功能的影响。","authors":"Seda Demir, Gereon R Fink, Maria A Rueger, Stefan J Blaschke","doi":"10.4103/NRR.NRR-D-24-01613","DOIUrl":null,"url":null,"abstract":"<p><p>Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions. Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities, a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed. Thus, we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment, with a particular emphasis on traumatic brain injury and stroke. Due to the lack of translational models in most noninvasive brain stimulation techniques proposed, we found this review to the most relevant techniques used in humans, i.e., transcranial magnetic stimulation and transcranial direct current stimulation. We searched the literature in PubMed, encompassing the MEDLINE and PMC databases, for studies published between January 1, 2020 and September 30, 2024. Thirty-five studies were eligible. Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury, with emerging mechanistic evidence. Overall, we identified neuronal, inflammatory, microvascular, and apoptotic pathways highlighted in the literature. This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"1264-1276"},"PeriodicalIF":5.9000,"publicationDate":"2026-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of noninvasive brain stimulation on motor functions in animal models of ischemia and trauma in the central nervous system.\",\"authors\":\"Seda Demir, Gereon R Fink, Maria A Rueger, Stefan J Blaschke\",\"doi\":\"10.4103/NRR.NRR-D-24-01613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions. Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities, a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed. Thus, we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment, with a particular emphasis on traumatic brain injury and stroke. Due to the lack of translational models in most noninvasive brain stimulation techniques proposed, we found this review to the most relevant techniques used in humans, i.e., transcranial magnetic stimulation and transcranial direct current stimulation. We searched the literature in PubMed, encompassing the MEDLINE and PMC databases, for studies published between January 1, 2020 and September 30, 2024. Thirty-five studies were eligible. Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury, with emerging mechanistic evidence. Overall, we identified neuronal, inflammatory, microvascular, and apoptotic pathways highlighted in the literature. This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation.</p>\",\"PeriodicalId\":19113,\"journal\":{\"name\":\"Neural Regeneration Research\",\"volume\":\" \",\"pages\":\"1264-1276\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2026-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Regeneration Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/NRR.NRR-D-24-01613\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/NRR.NRR-D-24-01613","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要:无创脑刺激技术通过调节大脑活动和改善认知和运动功能,为神经系统疾病的治疗和再生提供了广阔的前景。由于缺乏对潜在的作用模式和最佳治疗方式的了解,迫切需要在临床前动物模型中对无创脑刺激进行彻底的转化研究。因此,我们回顾了目前关于无创脑刺激在中枢神经系统损伤模型中的机制基础的文献,特别强调了创伤性脑损伤和中风。由于大多数非侵入性脑刺激技术缺乏转化模型,我们发现本文综述了人类使用的最相关技术,即经颅磁刺激和经颅直流刺激。我们检索了PubMed的文献,包括MEDLINE和PMC数据库,检索了2020年1月1日至2024年9月30日之间发表的研究。35项研究符合条件。经颅磁刺激和经颅直流电刺激在增强脑卒中和外伤性脑损伤后康复方面表现出明显的优势,并有新的机制证据。总的来说,我们确定了文献中强调的神经元,炎症,微血管和凋亡途径。这篇综述还强调了缺乏翻译替代参数来弥合临床前发现和临床翻译之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of noninvasive brain stimulation on motor functions in animal models of ischemia and trauma in the central nervous system.

Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions. Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities, a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed. Thus, we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment, with a particular emphasis on traumatic brain injury and stroke. Due to the lack of translational models in most noninvasive brain stimulation techniques proposed, we found this review to the most relevant techniques used in humans, i.e., transcranial magnetic stimulation and transcranial direct current stimulation. We searched the literature in PubMed, encompassing the MEDLINE and PMC databases, for studies published between January 1, 2020 and September 30, 2024. Thirty-five studies were eligible. Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury, with emerging mechanistic evidence. Overall, we identified neuronal, inflammatory, microvascular, and apoptotic pathways highlighted in the literature. This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Regeneration Research
Neural Regeneration Research CELL BIOLOGY-NEUROSCIENCES
CiteScore
8.00
自引率
9.80%
发文量
515
审稿时长
1.0 months
期刊介绍: Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信