Seda Demir, Gereon R Fink, Maria A Rueger, Stefan J Blaschke
{"title":"无创脑刺激对中枢神经系统缺血和创伤动物模型运动功能的影响。","authors":"Seda Demir, Gereon R Fink, Maria A Rueger, Stefan J Blaschke","doi":"10.4103/NRR.NRR-D-24-01613","DOIUrl":null,"url":null,"abstract":"<p><p>Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions. Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities, a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed. Thus, we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment, with a particular emphasis on traumatic brain injury and stroke. Due to the lack of translational models in most noninvasive brain stimulation techniques proposed, we found this review to the most relevant techniques used in humans, i.e., transcranial magnetic stimulation and transcranial direct current stimulation. We searched the literature in PubMed, encompassing the MEDLINE and PMC databases, for studies published between January 1, 2020 and September 30, 2024. Thirty-five studies were eligible. Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury, with emerging mechanistic evidence. Overall, we identified neuronal, inflammatory, microvascular, and apoptotic pathways highlighted in the literature. This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation.</p>","PeriodicalId":19113,"journal":{"name":"Neural Regeneration Research","volume":" ","pages":"1264-1276"},"PeriodicalIF":5.9000,"publicationDate":"2026-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of noninvasive brain stimulation on motor functions in animal models of ischemia and trauma in the central nervous system.\",\"authors\":\"Seda Demir, Gereon R Fink, Maria A Rueger, Stefan J Blaschke\",\"doi\":\"10.4103/NRR.NRR-D-24-01613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions. Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities, a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed. Thus, we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment, with a particular emphasis on traumatic brain injury and stroke. Due to the lack of translational models in most noninvasive brain stimulation techniques proposed, we found this review to the most relevant techniques used in humans, i.e., transcranial magnetic stimulation and transcranial direct current stimulation. We searched the literature in PubMed, encompassing the MEDLINE and PMC databases, for studies published between January 1, 2020 and September 30, 2024. Thirty-five studies were eligible. Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury, with emerging mechanistic evidence. Overall, we identified neuronal, inflammatory, microvascular, and apoptotic pathways highlighted in the literature. This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation.</p>\",\"PeriodicalId\":19113,\"journal\":{\"name\":\"Neural Regeneration Research\",\"volume\":\" \",\"pages\":\"1264-1276\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2026-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Regeneration Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/NRR.NRR-D-24-01613\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Regeneration Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/NRR.NRR-D-24-01613","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Effects of noninvasive brain stimulation on motor functions in animal models of ischemia and trauma in the central nervous system.
Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions. Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities, a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed. Thus, we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment, with a particular emphasis on traumatic brain injury and stroke. Due to the lack of translational models in most noninvasive brain stimulation techniques proposed, we found this review to the most relevant techniques used in humans, i.e., transcranial magnetic stimulation and transcranial direct current stimulation. We searched the literature in PubMed, encompassing the MEDLINE and PMC databases, for studies published between January 1, 2020 and September 30, 2024. Thirty-five studies were eligible. Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury, with emerging mechanistic evidence. Overall, we identified neuronal, inflammatory, microvascular, and apoptotic pathways highlighted in the literature. This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation.
期刊介绍:
Neural Regeneration Research (NRR) is the Open Access journal specializing in neural regeneration and indexed by SCI-E and PubMed. The journal is committed to publishing articles on basic pathobiology of injury, repair and protection to the nervous system, while considering preclinical and clinical trials targeted at improving traumatically injuried patients and patients with neurodegenerative diseases.